Классификация элементарных частиц

В настоящее время известно около 400 субъядерных частиц, которые принято называть элементарными. Подавляющее большинство этих частиц являются нестабильными. Исключение составляют лишь фотон, электрон, протон и нейтрино. Все остальные частицы через определенные промежутки времени испытывают самопроизвольные превращения в другие частицы. Нестабильные элементарные частицы сильно отличаются друг от друга по временам жизни. Наиболее долгоживущей частицей является нейтрон. Время жизни нейтрона порядка 15 мин. Другие частицы «живут» гораздо меньшее время. Например, среднее время жизни мезона равно 2,2_10^6 с. Многие массивные частицы – гипероны имеют среднее время жизни порядка 10^10 с. Существует несколько десятков частиц со временем жизни, превосходящим 10^17 с. По масштабам микромира это значительное время. Такие частицы называют относительно стабильными. Большинство короткоживущих элементарных частиц имеют времена жизни порядка 10^22–10^23 с.

Способность к взаимным превращениям – это наиболее важное свойство всех элементарных частиц. Элементарные частицы способны рождаться и уничтожаться (испускаться и поглощаться). Это относится также и к стабильным частицам с той только разницей, что превращения стабильных частиц происходят не самопроизвольно, а при взаимодействии с другими частицами. Примером может служить аннигиляция (т. е. исчезновение) электрона и позитрона, сопровождающаяся рождением фотонов большой энергии. Может протекать и обратный процесс – рождение электронно-позитронной пары, например, при столкновении фотона с достаточно большой энергией с ядром. Такой опасный двойник, каким для электрона является позитрон, есть и у протона. Он называется антипротоном. Электрический заряд антипротона отрицателен. В настоящее время античастицы найдены у всех частиц. Античастицы противопоставляются частицам потому, что при встрече любой частицы со своей античастицей происходит их аннигиляция, т. е. обе частицы исчезают, превращаясь в кванты излучения или другие частицы.

В многообразии элементарных частиц, известных к настоящему времени, обнаруживается более или менее стройная система классификации. Наиболее удобной систематикой многочисленных элементарных частиц является их классификация по видам взаимодействий, в которых они участвуют. По отношению к сильному взаимодействию все элементарные частицы делятся на две большие группы: адроны (от греч. hadros - большой, сильный) и лептоны (от греч. leptos - легкий).

Информацио́нная энтропи́я — мера неопределённости или непредсказуемости информации, неопределённость появления какого-либо символа первичного алфавита. При отсутствии информационных потерь численно равна количеству информации на символ передаваемого сообщения.

Например, в последовательности букв, составляющих какое-либо предложение на русском языке, разные буквы появляются с разной частотой, поэтому неопределённость появления для некоторых букв меньше, чем для других. Если же учесть, что некоторые сочетания букв (в этом случае говорят об энтропии -го порядка, см. ниже) встречаются очень редко, то неопределённость уменьшается еще сильнее.

Для иллюстрации понятия информационной энтропии можно также прибегнуть к примеру из области термодинамической энтропии, получившему название демона Максвелла. Концепции информации и энтропии имеют глубокие связи друг с другом, но, несмотря на это, разработка теорий в статистической механике и теории информации заняла много лет, чтобы сделать их соответствующими друг другу.

Энтропия — это количество информации, приходящейся на одно элементарное сообщение источника, вырабатывающего статистически независимые сообщения.

В каждом теле, в каждом веществе в скрытом виде заключена внутренняя энергия, которая складывается из энергии движения и взаимодействия атомов, молекул, ядер и других частиц, внутриядерную и другие виды энергии, кроме кинетической энергии движения системы, и потенциальной энергии ее положения. Абсолютную величину внутренней энергии определить невозможно. Она представляет собой способность системы к совершению работы или передаче теплоты. Однако можно определить ее изменение U при переходе из одного состояния в другое.

Теплота Q представляет собой количественную меру хаотического движения частиц данной системы или тела. Энергия более нагретого тела в форме теплоты передается менее нагретому телу. При этом не происходит переноса вещества.

Работа А является количественной мерой направленного движения частиц, мерой энергии, передаваемой от одной системы к другой за счет перемещения вещества от одной системы к другой под действием тех или иных сил, например гравитационных. Теплоту и работу измеряют в джоулях (Дж), килоджоулях (кДж) и мегаджоулях (МДж). Положительной считается работа, совершаемая системой против внешних сил (А > 0) и теплота, подводимая к системе (Q > 0). Теплота и работа зависят от способа проведения процесса, т.е. они являются функциями пути.

Количественное соотношение между изменением внутренней энергии, теплотой и работой устанавливает первый закон термодинамики

Изолированной системой называют систему, масса и энергия которой неизменны. Это означает, что передача вещества и движения через оболочку.такой системы исключена. Практически абсолютно изолированных систем не существует. В первом прибли­жении к таким системам можно отнести запаянную ампулу с хо­рошей теплоизоляцией.

Замкнутой называют систему, масса которой постоянна, а энергия может меняться. Такая система не препятствует процессам теплопередачи и работы, но через ее оболочку не происходит перенос вещества. Разновидностью закрытой системы, является адиабатическая система, у которой через гибкую оболочку теплопередачи не происходит, но изменение внутренней энергии системы возможно за счет совершения работы.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: