double arrow

Понятие о двумерных выборках и выборочных оценках двумерных СВ.

2

Если СВ образующие систему зависимы, то для нахождения закона распределения системы не достаточно знать законы распределения отдельных величин, входящих в систему, требуется знать так называемый условный закон распределения одной из них.

Условным законом распределения одной из величин системы (X, Y) называется ее закон распределения вычисленный при условии, что другая СВ приняла определенное значение.

Начнем с наиболее простого случая, а именно со случая, когда СВ Y является дискретной.

Условной функцией распределения называется условная вероятность события

Замечание 1. Условная функция распределения обладает всеми свойствами, которые присущи обычной (т.е. безусловной) функции распределения.

Замечание 2 Если СВ X также дискретная, причем , то удобно рассматривать условную вероятность , СВ X принять значения при условии, что ,

В общем случае условную функцию распределения , однако, это не всегда возможно. Потому, что для непрерывного типа P{Y=y}=0. Чтобы отстроиться от этих неприятностей, попытаемся воспользоваться предельным переходом, заменяя событие {Y=y}, событием {y≤Y<y+Δ} и устремив Δ → 0.

Получим.

Назовем условной функцией распределения

Оказывается такой предел всегда существует. Если СВ Y - непрерывна, то условную функцию распределения можно определить следующим выражением

В наиболее важных для приложений случаях вектор (X, Y) представляет собой двумерную непрерывную СВ с совместной плотностью .

Так как функция имеет производную по x, то мы получаем окончательное выражение для условной плотности.

2





Сейчас читают про: