Ротор, физический смысл ротора

В исследовании движения, например, жидкости, воронки и водовороты на поверхности воды всегда привлекают внимание исследователя. Математическая формулировка вращения жидкости приводит к понятию циркуляции, описанной выше. Продемонстрировать роль циркуляции во вращении жидкости можно следующим образом. Представим себе небольшое колесико с лопастями наподобие колеса водяной мельницы, но очень малых размеров. Предположим, что это колесо подвешено на подшипниках и может вращаться вокруг своей оси. Если мы поместим его в течение ручья, то оно либо будет в покое, либо будет вращаться. При этом пусть колесико целиком погружается в воду во всех случаях. Его вращение будет иметь место тогда, когда скорость течения воды в ручье в том месте, где погружено колесико, меняется от точки к точке пространства. Тогда на лопатки колеса с одной стороны вода набегает с несколько меньшей скоростью, чем с другой, и, под воздействием разности сил, действующих на лопатки с разных сторон, колесико придет во вращение, причем тем быстрее, чем больше неравномерность скорости в месте его погружения.

Рисунок 15 − Ротор

Колесико является лишь своеобразным индикатором вращения частей жидкости. Чтобы математически записать величину, определяющую тенденцию жидкости вращаться, проведем мысленно окружность через центры лопаток колеса и для этого контура, который собой представляет проведенная окружность, запишем циркуляцию скорости жидкости :

.

Если циркуляция равна нулю, то колесико останется неподвижным, если же циркуляция будет положительна, колесико начнет вращаться в положительном направлении, и наоборот. Вектор угловой скорости колесика будет направлен вдоль его оси в правовинтовой системе координат.

Чтобы сделать определение состояния жидкости независимым от размеров колесика, надо рассмотреть предел отношения циркуляции к площади поверхности круга, ограниченного контуром . Это выражение даст проекцию некоторого вектора на направление оси колесика :

Направление нормали связано с направлением положительного обхода по контуру с правилом правого винта.

Данный вектор называется ротором. Чтобы определить его полностью, нужно найти все три его проекции на взаимно перпендикулярные направления по аналогичным формулам, затем умножить их на соответствующие орты и сложить. Тогда, используя оператор Гамильтона, получим

и

Теорема Стокса

Из определения проекции ротора на направление нормали вытекает теорема Стокса, имеющая важное значение при выводе уравнений Максвелла. Теорема Стокса относится к контуру произвольных размеров и опирающейся на него поверхности. Для вывода выражения, представляющего собой теорему Стокса, разобьем поверхность , опирающуюся на контур , на большое число малых поверхностей , каждая из которых ограничена малым контуром (рисунок 16). Для каждой из малых поверхностей, составляющих вместе большую, будет приближенно справедливо выражение для проекции ротора на нормаль к поверхности, которое можно переписать в виде

,

где − малая величина более высокого порядка малости, чем . Здесь − номер контура и соответствующего элемента поверхности, так что равенства подобного вида будут записаны для всех элементов.

Рисунок 16 − Теорема Стокса

Сложим теперь эти равенства для всех элементов, в результате чего получим:

.

Рассмотрим сумму циркуляций в правой части этого уравнения. Все контуры должны иметь одинаковое направление обхода, так как нормали к элементам поверхности направлены в одну сторону, а направление нормали и обхода связаны между собой правилом правого винта. Поэтому соседние линии двух контуров, соприкасающихся между собой, будут направлены в противоположные стороны, и так будет для любой пары соседних линий. Следовательно, циркуляции по всем этим соседним участкам будут иметь одинаковую величину и противоположные знаки, и при сложении всех циркуляций останется только циркуляция по внешнему контуру, так как для внешнего контура не будет парных ему участков контура, направленных в противоположную сторону. Вследствие этого, для любого разбиения поверхности на участки, получится равенство

.

Это равенство будет справедливо и тогда, когда поверхность разбита на небольшое количество участков, так как оно основано на взаимном уничтожении циркуляций на линиях раздела соседних участков, в результате чего остается только циркуляция по внешнему контуру.

Будем увеличивать число площадок на поверхности до бесконечности при одновременном уменьшении их размеров. В пределе сумма в левой части перейдет в интеграл, а последнее слагаемое в правой части исчезнет и все равенство примет следующий вид:

.

Это равенство дает содержание теоремы Стокса: поверхностный интеграл ротора вектора равен циркуляции этого вектора по контуру, ограничивающему поверхность.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: