Площадь поперечного элементарно малого сечения струйки жидкости называется живым сечением. Живое сечение нормально к линиям тока (рис. 3.2).

Рис. 3.2. Элементарная струйка
Скорость движения частиц в живом сечении - скорость струйки
.
Расстояние вдоль струйки при известной скорости струйки
.
За определенное время
движущиеся частицы из сечения 1-1 переместятся в сечение 2-2, пройдя путь, равный
.
Таким образом, за время
через первое живое сечение площадью
пройдет количество жидкости, равное объему элементарного цилиндра:
.
Объем жидкости, отнесенный к единице времени
, - объемный расход (элементарный расход), который определяется по формуле, м3/с,
(3.9)
Количество жидкости, проходящей через живое сечение, можно представить через массу и вес жидкости.
Массовый расход струйки, кг/с,
(3.10)
Весовой расход струйки, Н/с,
(3.11)
Расходом жидкости называется количество жидкости, проходящей через живое сечение за единицу времени.
Рассмотрим элементарную струйку несжимаемой жидкости при установившемся движении (рис. 3.3). Выделим в элементарной струйке объем между двумя сечениями 1-1 и 2-2 в некоторый момент времени. Используем свойства элементарной струйки и закон сохранения вещества (массы).

Рис. 3.3. К выводу уравнения неразрывности
За время
масса жидкости
, находящаяся между сечениями 1-1 и 2-2, переместится в положение 1'-1' и 2'-2'.
Массы жидкости между сечениями


где
и
- элементарные массы жидкости, проходящие через сечения 1-1 и 2-2.
Масса жидкости остается неизменной при ее перемещении:

Следовательно,
Масса жидкости, проходящая через любое сечение, равна
.
Масса жидкости, проходящая через первое и второе сечения струйки за время
, составляет

где
- плотность жидкости, находящейся в трубке тока.
Таким образом,
(3.12)
Аналогично можно получить соотношение скоростей и элементарных площадей для других сечений струйки.
Например,

Таким образом, для любого сечения струйки
.
Уравнение неразрывности для элементарной струйки при установившемся движении утверждает, что элементарный расход во всех сечениях струйки постоянен.
Уравнение неразрывности записывается в следующем виде:
(3.13)
Скорости движения в разных сечениях струйки согласно (3.13) обратно пропорциональны элементарным площадям живых сечений струйки:
(3.14)
где
- произвольное живое сечение струйки, скорость струйки в нем
.






