Возбуждение синхронных генераторов

Обмотка ротора синхронного генератора питается постоянным током, который создает магнитный поток возбуждения. Обмотка ротора, источник постоянного тока, устройства регулирования и коммутации составляют систему возбуждения генератора.

Системы возбуждения должны:

· обеспечивать надежное питание обмотки ротора в нормальных и аварийных режимах;

· допускать регулирование напряжения возбуждения в достаточных пределах;

· обеспечивать быстродействующее регулирование возбуждения с высокими кратностями форсирования в аварийных режимах;

· осуществлять быстрое развозбуждение и в случае необходимости производить гашение поля в аварийных режимах.

Важнейшими характеристиками систем возбуждения являются: быстродействие, определяемое скоростью нарастания напряжения на обмотке ротора при форсировке

V =0,632(Uf пот Uf ном)/ Uf ном t 1

и отношение потолочного напряжения к номинальному напряжению возбуждения

Uf пот / Uf ном = k ф

так называемая кратность форсировки.

Согласно ГОСТ турбогенераторы должны иметь k ф >2, а скорость нарастания возбуждения – не менее 2 с-1. Кратность форсировки для гидрогенераторов должна быть не менее 1,8 для коллекторных возбудителей, соединенных с валом генератора, и не менее 2 для других систем возбуждения. Скорость нарастания напряжения возбуждения должна быть не менее 1,3 с-1 для гидрогенераторов мощностью до 4 MB А включительно и не менее 1,5 с-1 для гидрогенераторов больших мощностей [2.3].

Для мощных гидрогенераторов, работающих на дальние электропередачи, к системам возбуждения предъявляются более высокие требования: k ф = 3 – 4, скорость нарастания возбуждения до 10 Uf номв секунду.

Обмотка ротора и системы возбуждения генераторов с косвенным охлаждением должны выдерживать двукратный по отношению к номинальному ток в течение 50 с. Для генераторов с непосредственным охлаждением обмоток ротора это время сокращается до 20 с, для генераторов мощностью 800–1000 МВт принято время 15 с, 1200 МВт - 10 с (ГОСТ 533-85Е).

В зависимости от источника питания системы возбуждения разделяются на системы н е з а в и с и м о г о возбуждения и самовозбуждения.

В системе независимого возбуждения на одном валу с генератором находится возбудитель – генератор постоянного или переменного тока. В системе самовозбуждения питание обмотки возбуждения осуществляется от выводов генератора через специальные понижающие трансформаторы и выпрямительные устройства.

Для генераторов мощностью до 100 МВт в качестве возбудителя применяется генератор постоянного тока GE, соединенный с валом генератора (рис. 2.9, а). Обмотка возбуждения возбудителя LGE питается от якоря возбудителя, ток в ней регулируется реостатом RR или автоматическим регулятором возбуждения АРВ. Ток, подаваемый в обмотку возбуждения LG синхронного генератора G, определяется величиной напряжения на возбудителе. Недостатком такой системы возбуждения является невысокая надежность работы генератора постоянного тока GE из-за вибрации и тяжелых условий коммутации при высокой частоте вращения 3000 об/мин. Другим недостатком является невысокая скорость нарастания возбуждения, особенно у гидрогенераторов (V = 1–2 с-1).

Рис. 2.9. Принципиальные схемы возбуждения генераторов:

а – независимое электромашинное возбуждение;

б – полупроводниковое самовозбуждение

В системе самовозбуждения (рис. 2.9, б)обмотка возбуждения генератора LG получает питание от трансформатора ТЕ, присоединенного к выводам генератора, через управляемые от АРВ вентили VS и от трансформаторов тока ТА через неуправляемые вентили VD. Ток вентилей VD пропорционален току статора, поэтому они обеспечивают форсировку возбуждения и работу генератора при нагрузке. Управляемые вентили VS подают ток, пропорциональный напряжению генератора, и обеспечивают регулирование напряжения в нормальном режиме. Такая система применяется для мощных синхронных машин.

Широкое распространение получила система возбуждения с машинным возбудителем 50 Гц и статическими выпрямителями (статическая тиристорная система независимого возбуждения – рис. 2.10). На одном валу с генератором G находится вспомогательный синхронный генератор GE, который имеет на статоре трехфазную обмотку с отпайками, к которым присоединены две группы тиристоров: рабочая группа VD1 – на низкое напряжение возбудителя и форсировочная группа VD2 – на полное напряжение. Применение двух групп тиристоров обеспечивает потолок возбуждения до 4 Uf номи высокое быстродействие (V =50 с1). Обе группы соединяются параллельно по трехфазной мостовой схеме. На рис. 2.10 для упрощения чтения схемы показаны тиристоры только в одной фазе.

Система управления тиристорами AVD2 и AVD1 питается от трансформатора ТА1 и связана с АРВ (автоматическое регулирование возбуждения). Возбудитель GE имеет обмотку возбуждения LGE, получающую питание от трансформатора ТА2 через вентили VD. В рассмотренной схеме также показаны элементы схемы автоматического гашения магнитного поля (АГП): автомат АГП, резистор R, разрядник FVn контактор КМ.

Рис. 2.10. Статическая тиристорная система независимого возбуждения

Рис. 2.11. Бесщеточная система возбуждения

К недостаткам схемы следует отнести наличие возбудителя переменного тока, который усложняет эксплуатацию, а также наличие скользящих контактов между неподвижными щетками, к которым присоединена система неподвижных тиристоров, и подвижными контактными кольцами КК, вращающимися на валу ротора.

Последний недостаток привел к разработке бесщеточной системы возбуждения (рис. 2.11). В качестве возбудителя GE в этой системе используется синхронный генератор 50 Гц, обмотка возбуждения которого LE расположена на неподвижном статоре, а трехфазная обмотка – на вращающемся роторе. Обмотка LE получает питание от подвозбудителя GEA через выпрямитель VDE.

На одном валу с возбудителем на специальных дисках укреплены тиристоры VD, которые выпрямляют переменный ток возбудителя и подают его в ротор генератора по жестким шинам без колец и щеток, так как ротор генератора, тиристоры VD и ротор возбудителя вращаются на одном валу с одинаковой скоростью.

Регулирование тока возбуждения осуществляется от АРВ путем воздействия на тиристоры через импульсное устройство Л и вращающийся трансформатор ТА.

Достоинством этой системы является отсутствие контактных колец и щеток, недостатком – необходимость останова генератора для переключения на резервное возбуждение или для замены тиристоров.

Бесщеточная система применяется для синхронных компенсаторов мощностью 50 MB-А и более и турбогенераторов мощностью 800 МВт и более.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: