double arrow

Основные представления квантовой теории атома.

1

Тема № 5.

Основы современной химии

Вопросы:

1. Основные представления квантовой теории атома

2. Молекула как система атомов

3. Понятие химической связи и ее типы

Основные представления квантовой теории атома.

Важным достижением квантовой механики явилось создание квантовой теории строения атома. Многочисленные эксперименты показали, что атомы (размер примерно 10-8 см) состоят из тяжелого, обладающего положительным электрическим зарядом ядра (примерно 10-13 см) и окружающих его отрицательно заряженных легких электронов (-е), образующих определенным образом расположенные оболочки атома. Важнейшая характеристика атома — заряд его ядра; она определяет принадлежность ядра тому или иному химическому элементу. Заряд ядра определяется количеством протонов (имеющих заряд +е) в нем. Таким образом, ядро атома с порядковым номером N и массовым числом М в периодической системе содержит N протонов, имеющих общий заряд (+eN) и (M—N) нейтронов (всего М нуклонов). Число электронов, вращающихся вокруг ядра, равно числу протонов в ядре, поэтому их суммарный заряд равен (—eN), и в нормальном состоянии атом нейтрален. Потеря одного или нескольких электронов превращает нейтральный атом в положительный ион, а приобретение электронов — в отрицательный ион. Масса атома определяется в основном массой его ядра, так как масса электрона почти в 2000 раз меньше массы протона (и нейтрона). Впрочем, масса ядра у одного и того же элемента может отличаться за счет изменения числа нейтронов в ядре. Ядра с разным числом нейтронов, а значит и различным массовым числом, называются изотопами.

Являясь микрообъектом, атом подчиняется квантово-механическим закономерностям. Так, его полная энергия принимает лишь дискретные значения, изменяется скачкообразно в ходе квантового перехода из одного стационарного состояния в другое, поглощая или излучая квант света (фотон) определенной частоты (Еi — Еj= hv). Совокупность частот возможных переходов определяет спектры (поглощения и испускания) атома. В основном состоянии атом может находиться сколь угодно долго, обладая способностью поглощать фотоны.

Поглощение фотонов переводит его в возбужденное состояние, при котором он может или еще поглощать фотоны, или испускать их. Время жизни атома в возбужденном состоянии ограниченно. Так или иначе, но возбужденный атом — за очень короткое время — спонтанно испускает фотон и переходит на более низкий энергетический уровень, стремясь к основному состоянию. Получение или приобретение энергии атомом может происходить не только за счет взаимодействия с фотонами, квантами света, но и за счет взаимодействия или столкновения с другими частицами, в том числе электронами (в молекулах, газах, твердых телах и др.).

Атом как квантово-механическая система подчиняется принципу квантово-волнового дуализма. Прежде всего это значит, что движение его электронов можно рассматривать и как движение материальной точки по траектории, и как сложный волновой колебательный процесс. Поэтому в квантово-механических моделях атомные электроны представлены как электронное облако, «размазанное» в пространстве вокруг ядра. Причем наибольшая плотность этого облака — на наиболее близких расстояниях от ядра. Именно она определяет основное состояние атома. При возбужденных состояниях электронное облако распределяется на все большем удалении от ядра. Слабее всего связаны с ядром электроны самой внешней оболочки. Именно они играют важную роль при межатомном взаимодействии и образовании молекул. Одна из важных особенностей многоэлектронных атомов (за исключением атома водорода, имеющего лишь один электрон) состоит в том, что между электронами существуют силы взаимного отталкивания, которые существенно уменьшают прочность связи электронов с ядром. Чем больше электронов в атоме и чем дальше они находятся от ядра, тем меньше у них энергия отрыва от атома, которая приводит к превращению атома в ион.

Важную роль играют закономерности распределения электронов по слоям вокруг ядра, которые подчиняются принципу Паули, гласящему, что в каждом квантовом состоянии (определяемом так называемыми четырьмя квантовыми числами — главным квантовым числом, орбитальным квантовым числом, магнитным орбитальным квантовым числом, спином) не может находиться больше одного электрона. Иначе говоря, любые два электрона должны различаться хотя бы одним квантовым числом.

В соответствии с этим принципом электроны заполняют электронные слои и оболочки строго определенным образом. Так, в первом, наиболее близком к ядру, слое может быть только два электрона; во втором и третьем — 8 (в оболочках — 2 и 6), в четвертом и пятом — 18 (в оболочках — 2, 6, 10), в шестом и седьмом — 32 (в оболочках — 2, 6, 10, 14). Чем выше слой, тем слабее его электроны связаны с ядром, легче его покидают, в большей мере подвергаются внешним воздействиям и склонны к установлению (химических) связей с другими атомами, образуя при этом молекулы. В химических связях участвуют электроны внешних оболочек. Именно число электронов на внешней оболочке определяет химическую активность элемента. Порядок заполнения электронных слоев задает структуру периодической системы Менделеева: число химических элементов в периоде равно числу элементов в слое.

Создание квантово-механической теории атома имело не только фундаментальное теоретическое, но и практическое значение. Во-первых, оно придало мощный импульс развитию атомной энергетики (высвобождению атомной энергии, созданию атомных электростанций и энергетических установок).

Во-вторых, оно стало стимулом для работ по искусственному расширению человеком границ мира атомов. Эпоха открытия новых элементов периодической системы из их природных соединений закончилась. Ей на смену пришла эпоха искусственного получения новых элементов в лабораторных условиях, в ускорителях элементарных частиц. Так, во времена Менделеева было известно 60 с небольшим элементов. В 1930-е гг. периодическая система заканчивалась ураном (порядковый номер в системе — 92). В период с 1940 по 1955 г. путем физического синтеза атомных ядер был получен ряд новых элементов: нептуний, плутоний, америций, кюрий, берклий, калифорний, фермий, менделевий и др. Впоследствии было синтезировано еще 7 новых элементов. В настоящее время периодическая система насчитывает 110 элементов. Ядра с зарядом большим, чем +110е, крайне нестабильны. Вместе с тем вопрос об абсолютно полном списке элементов остается открытым. Есть основания для продолжения этого списка: возможно существование «островков стабильности» для элементов с порядковыми номерами свыше 120-ти.

Завершая рассмотрение основных представлений квантовой теории атома, добавим, что современная атомная физика нашла решение проблемы, которая столетиями волновала умы алхимиков — трансмутации веществ (т.е. химических элементов), и в частности получения золота. Эта задача вполне решаема в ускорителях элементарных частиц. Но такая «добыча» золота неизмеримо дороже его обычной добычи из «кладовых природы».

1

Сейчас читают про: