Основные мишени действия лекарственных веществ

Для более точного представления о механизме действия и фармакодинамике лекарственных веществ очень важное значение имеет учет специфичности, чувствительности, нейрогуморальной регуляции, рецепторов, синапсов, биологических мембран, называемых мишенями действия лекарственных веществ.

Чувствительность в широком понятии - способность животного организма реагировать на разные эндогенные и экзогенные раздражители. Во врачебной практике чаще всего о чувствительности говорят в более узком смысле, а именно как о способности анализаторов реагировать на раздражитель. Это свойство присуще всем живым организмам, но оно усложняется и совершенствуется как в филогенезе, так и в онтогенезе.

Анализаторами, по предложению И. П. Павлова, называют сложные анатомо-физиологические системы, обеспечивающие восприятие и анализ всех раздражителей, действующих на животных.

Принято учитывать чувствительность абсолютную, или минимальный порог раздражения (способность реагировать на минимальную величину раздражителя), и дифференциальную (способность реагировать на изменения интенсивности раздражения).

Различают также чувствительность протопатическую и эпикрическую. Протопатическая чувствительность есть примитивный вид чувствительности, воспринимающий только сильные механические и термические раздражения. В отличие от этого чувствительность эпикрическая более тонкая и дифференцированная.

У животных бывают очень различные нарушения чувствительности, а чаще всего:

1) гиперестезия (повышение разных видов чувствительности с понижением порога соответствующей чувствительности);

2) гиперпатия (повышенная чувствительность - болевая, температурная, тактильная) с изменением качества ощущения, с нарушением локализации и дифференциации его;

3) полиэстезия - когда одиночные раздражения воспринимаются как множественные;

4) аллоэстезия - раздражения ощущаются в другом месте;

5) аллохейрия - раздражение ощущается в симметричном участке другой стороны. Иногда извращается ощущение раздражения, например, болезненное ощущение холода или тепла.

Чувствительность сильно изменяется при разных изменениях в организме и в первую очередь при изменении состояния центральной нервной системы и симпатической иннервации. Ее можно существенно изменить фармакологическими веществами - повысить или ослабить, можно восстановить нарушенное состояние их, можно и профилактировать нарушения.

Постоянство состава внутренней среды организма и функции физиологических систем регулируются и координируются нервной системой и биологически активными веществами, содержащимися в крови, лимфе и тканевой жидкости; обычно это называется нейрогуморальной регуляцией, а активные вещества нервными и гуморальными интеграторами. В нейрогуморальной регуляции участвуют очень различные специфические и неспецифические продукты обмена веществ, в том числе медиаторы, нейрогормоны, гистамин, простагландины, олигопептиды и др.

Биологически активные вещества с током крови разносятся и вступают во взаимодействие только с соответствующими рецепторами (адрено-, холино-, серотонин-, гистамин- и др.) реактивных структур в тех или иных клетках и часто называемых «клетками-мишенями», а так как клетки разных органов имеют сходное строение, то можно говорить о действии биологически активных веществ на «орган-мишень».

Влияние биологически активных веществ обычно осуществляется через разные промежуточные соединения вторичных передатчиков, из которых очень важную роль играют аденозин-3-5-монофосфат (3-5-цАМФ — универсальный передатчик действия катехоламинов) и циклический гуанидин-З-5-монофосфат (цГМФ — посредник действия ацетилхолина, инсулина, а также многих других трофотропных веществ).

Участие вторичных передатчиков в проявлении эффекта довольно сложное, происходящее через ряд этапов. Прежде всего, они образуются и в обычных условиях жизни клетки, а под влиянием фармакологических агентов активизируются или подавляются. Необходимые условия для этого чаще всего касаются изменения тканевого обмена и активизации некоторых ферментов (аденилатциклады, фосфодиэтилэстеразы и др.). Образовавшееся биологически активное вещество передает соответствующую информацию в центральную нервную систему, т. е. в определенных условиях выполняет функцию звена рефлекторной дуги (рис. 2). Это вызывает ответную реакцию наиболее чувствительных отделов ЦНС, в результате чего изменяется поток нервных импульсов, передаваемых в рабочие органы.

Рефлекторная дуга (в ранее принятом понятии) усложняется включением гуморальных связей и поэтому представляется состоящей из звеньев, имеющих высокую специфическую чувствительность к различным фармакологическим веществам. Значение нейрогуморальных рефлекторных дуг усиливается наличием в центральной нервной системе специальных медиаторных нейронных систем (норадреналиновые, дофаминовые, серотониновые, ацетилхолиновые, гистаминовые и др.). Благодаря этим системам ЦНС не только осуществляет рефлекторную связь, но и продуцирует высокоактивные химико-фармакологические вещества типа медиаторов (пептиды, катехоламиды, ацетилхолин, серотонин, гамма-аминомасляная кислота и др.), регулирующие деятельность и мозга и всех физиологических систем. В фармакологии нейрогуморальной регуляции больше внимания теперь уделяется контролю за чувствительностью регулирования синаптической передачи, состоянием рецепторов и активностью медиаторов.

Медиаторы (нейротрансмиттеры, синаптические передатчики) - химические передатчики нервного импульса на клетки физиологических систем или на другие нервные клетки. Место передачи получило название синапсов, а химические структуры, с которыми взаимодействует медиатор, реактивными (холинергические, адренергические). Значительная часть медиаторов является биогенными аминами (декарбоксилированные производные ароматических аминокислот). Из катехоламиновых производных хорошо изучен дофамин, известный медиатор интернейронов синаптических ганглиев.

Дофаминергические нейроны имеются в лимбической системе среднего мозга, а также в гипоталамической области и в сетчатке. Норадреналин вырабатывается в мозговом веществе надпочечников, в скоплениях вненадпочечниковой хромафинной ткани, в головном мозге и в постганглионарных окончаниях симпатических нервов. Он является медиатором симпатических нейронов.

Серотонин (производное индола) — медиатор нервных сплетений кишечника; он активно влияет на дыхание и кровообращение, положительно ино- и хронотропно на сердце, возбуждает гладкие мышцы.

Ацетилхолин - уксуснокислый эфир холина — медиатор постганглионарных окончаний холинергических нервов и очень широкого влияния.

Некоторые медиаторы являются аминокислотами: глицин, глутаминовая, гамма-аминомасляная, аспарагиновая и др.

Образование медиаторов является обязательной частью нормального хода обмена веществ в пресинаптической зоне. Например, а-тирозин под влиянием фермента тирозин-3-гидроксилазы преобразуется в L-дофа, а она под воздействием дофа-декарбоксилазы переходит в дофамин. Под воздействием дофамин-гидроксилазы дофамин превращается в норадреналин, а он под воздействием фенилэтаноламин-N-метилтрансферазы — в адреналин.

Рецепторы - специфические концевые образования чувствительных нервов, воспринимающие раздражения и трансформирующие энергию внешнего раздражения в процесс нервного возбуждения. Они информируют головной мозг животного о состоянии и изменениях внутренней и внешней среды.

Рецепторы, обеспечивающие основное действие лекарств, называют специфическими.

Сродство вещества к рецептору, приводящее к образованию с ним комплекса, обозначается термином аффинитет. Способность вещества при взаимодействии с рецептором вызывать тот или иной эффект, называется внутренней активностью вещества.

Лекарства, вызывающие при взаимодействии с рецептором биологический эффект, называют агонистами. Возможно связывание двух различных агонистов с разными участками макромолекулы рецептора. Это явление носит название аллостерического взаимодействия. В этом случае одно вещество может повышать или снижать аффинитет другого. Например, сибазон аллостерически повышает аффинитет ГАМК к соответствующим рецепторам.

Вещества, не вызывающие эффекта при взаимодействии с рецепторами, но уменьшающие или устраняющие эффекты агонистов, носят название антагонистов.

Кроме специфических рецепторов существуют еще неспецифические, с ними могут связываться многие лекарственные вещества, не вызывая при этом никаких эффектов. Примером могут служить рецепторы белков плазмы крови.

Фармакологические рецепторы, включенные в мембраны клеток, называют мембранными рецепторами, а рецепторы, находящиеся в цитоплазме, называют цитоплазматическими.

Клеточные рецепторы воспринимают всю информацию из окружающей среды и одновременно являются тригерными (пусковыми) механизмами, запускающими деятельность клетки.

К воспринимающим приборам относятся рецепторы всех органов чувств (осязание, обоняние, вкус, слух, зрение) и специальные рецепторные образования в органах и тканях.

Характерным для любых рецепторов является восприятие только определенных видов (и даже в очень незначительной силе) раздражения. Разнообразие раздражителей рецепторов привело к сложности строения и большой дифференциации этих биологических структур, к образованию множества типов сенсорных органов.

Различают рецепторы - воспринимающие раздражения из внешней среды (экстерорецепторы), из внутренних органов (интерорецепторы), а также из скелетных мышц и сухожилий (проприорецепторы).

В зависимости от особенностей раздражителя различают механорецепторы, хеморецепторы, терморецепторы, а также рецепторы, воспринимающие боль, свет, звук, вкус, запах и др.

Высокая чувствительность анализаторов, как полагают, обеспечивается наличием в рецепторах специальных сенсибилизаторов или структур, обеспечивающих трансформацию энергии раздражения в возбудительный процесс.

Реакция анализаторов на лекарственное вещество тем значительнее, чем выше концентрация его и чем больше площадь контакта с тканями. Изменение возбудителей рецептора и порог его неодинаковы при воспалении, а также при разном состоянии центральной нервной системы и адренергической иннервации.

При воздействии на экстерорецепторы фармакологическими веществами чаще всего изменяют чувствительность (болевую, тактильную и температурную). При воздействии на интерорецепторы вызывают изменение состояния их во внутренних органах, сосудах и др. (горечи, сладкие, ароматические, местноанестезирующие, слизистые, вяжущие, слабительные вещества и др.).

Для действия на проводящие пути практически применяют местноанестезирующие вещества. На принципе раздражения рецепторов афферентных нервов основано слабительное влияние гипертонических растворов солей, действие горьких и сладких веществ, эмодина и хризофановой кислоты. Для действия на центры, воспринимающие импульсы от рецептора, используются в зависимости от потребности все вещества, влияющие на центральную нервную систему.

К наиболее изученным холинорецепторам относят прежде всего М-холинорецепторы. Установлено, что в них есть три центра, реагирующие с функциональными группами ацетилхолина:

· 1 - анионный центр (реагирует с катионным центром медиатора),

· 2 - центр кислородный (реагирует с эфирным кислородом медиатора)

· 3 - центр карбонильно-кислородный (реагирует е карбонильным кислородом ацетилхолина или с соответствующими ему активными группами (рис. 3).

Все эти три центра находятся в рецепторе в очень точном взаиморасположении и только в этих условиях они воспринимают ацетилхолин. Структура рецепторов очень различна.

Большой научный и практический интерес представляет открытие рецепторов мозга. Примером этого могут быть новые данные об опиатных рецепторах. Известно, что антагонистом опиатов является налоксон. Эксперименты с этим препаратом показали, что в гомогенате мозга крыс опиаты тормозят способность налоксона активно связываться с тканями мозга. Было высказано предположение, что опиаты и налоксон связываются с одними и теми же рецепторами. Основанием для этого было также то, что связывание налоксона разными опиатами коррелировано с их анальгезируюшей активностью. Последующие эксперименты в разных направлениях подтвердили наличие опиатных рецепторов в тканях мозга. Наибольшее количество их обнаружено в лимбической системе - в стриатуме, гипоталамусе, миндалинах и очень мало в мозжечке и спинном мозге.

Рис. 2. Схематическое изображение медиаторных путей в головном мозге:

НА — норадреналиновые пути;

ДА—дофаминовые пути (левая половина рисунка);

С — серотониновые пути (правая половина рисунка);

1 — лимбический отдел переднего мозга;

2 — неостриатум;

3 — новая кора;

4 — палеостриатум;

5 — зрительный бугор;

6 — гипоталамус;

7 — средний мозг;

8 — варолиев мост;

9 — продолговатый мозг;

10 — спинной мозг.

Доказано, что опиатоподобное вещество мозга состоит из двух пентапептидов, названных энкефалинами. Один (мет-ЭНК) — Н-тирозин-глицин-глицин-фенил-аланин-метидин-ОН, второй (лей-ЭНК) — Н-тирозин-глицин-глицин-фенил-аланин-лейцин-ОН. Природные и синтетические энкефалины по анальгезирующему эффекту, по механизму действия и по отношению к налоксону имеют много сходного с опиатами, а по химическому составу - с некоторыми пептидами мозга, в частности у них такая же последовательность аминокислот (61- 65), как и в гормоне гипофиза бета-липотропине.

Современное изучение бета-липотропина и разных частей его молекулы показало, что опиатоподобной активностью обладает ряд полипептидов, выделенных из задней доли гипофиза и гипоталамуса. Этим пептидам дано название эндорфины (эндогенные морфины). Более того, установлено, что некоторые эндорфины активнее энкефалинов.

Изучение биологической роли энкефалинов и эндорфинов привело к предположению, что их влияние проявляется не только в регулировании процессов боли и обезболивания, но и эмоциональных процессов. Установлено, что эндорфины, помимо анальгетического влияния, оказывают выраженное седативное и каталептическое действие подобно нейролептикам.

Синапсы — специализированные нервные образования, где происходит контакт между возбудимыми клетками (рис. 4). Они необходимы для осуществления функции передачи и преобразования сигналов. Иными словами, они обеспечивают проявление активности нервной системы и интегративную деятельность мозга.

Рис. 3. Схема строения М- и Н-холинорецепторов и взаимодействие с ними ацетилхолина

А - М-холинорецептор;

I - анионный центр, взаимодействующий с положительно заряженным атомом азота («катионная головка») АХ;

II — центр реакции холинорецептора с эфирным кислородом АХ;

III — центр реакции холинорецептора с карбонильным кислородом АХ;

IV— центр реакции холинорецептора с гидроксилом кислотной части холинолитика.

Заштрихованные участки— места связи (по типу связи Ван-дер-Ваальса) холинорецептора с М-холинолитиками;

штриховыми линиями обозначены места связи центров холинорецептора с активными группами АХ.

Б — Н-холинорецептор;

I — анионный центр, взаимодействующий с положительно заряженным атомом азота («катионная головка») АХ;

II — центр с частично отрицательным зарядом, реагирующий с эфирным кислородом АХ;

III — дополнительный анионный центр.

Заштрихованные участки - места связи (по типу связи Ван-дер-Ваальса) холинорецептора с Н-холиноблокаторами;

штриховыми линиями обозначены места связи центров холинорецептора с активными группами АХ.

Передача в синапсах осуществляется при посредстве медиаторов. Медиаторы не только осуществляют передачу импульса на рецепторы постсинаптических мембран, но и изменяют проницаемость мембран для ионов, вызывают генерацию местного нерегенеративного потенциала. Граница соприкосновения осуществляется через две мембраны — пресинаптическую и постсинаптическую, а пространство между ними принято называть синаптической щелью.

Пресинаптическая мембрана является завершающейся частью поверхностной мембраны оксонального окончания; она имеет сложную проницаемость (некоторые даже считают, что у нее есть отверстия для выделяемого медиатора). Постсинаптическая мембрана не имеет отверстий, но она избирательно проницаема для медиатора с пресинаптической мембраны.

Синапсы пресинаптических окончаний имеют синаптические пузырьки, наполненные медиатором высокой концентрации. Эти медиаторы под влиянием нервного импульса выходят из пузырьков в местах перерыва мембраны, проникают в синаптическую щель и контактируют с постсинаптической мембраной. Фармакологическое воздействие на синапсы очень простое — ускорить или замедлить введение в действие как возбуждения, так и угнетения заключается в том, что нервный импульс, проходящий в пресинаптическое окончание, вызывает деполяризацию пресинаптической мембраны, изменяет ряд свойств ее, в том числе увеличивает проницаемость ионов кальция.

Ионы кальция в пресинаптической мембране ускоряют освобождение медиатора из пузырьков. Медиатор легко диффундирует, проходит через синаптическую щель и реагирует с рецепторами постсинаптической мембраны; этот процесс ярко выражен, так как в это же время происходит генерация потенциала постсинаптического и увеличение проницаемости синаптических мембран для одного или нескольких ионов. При возбуждении синапсов увеличивается натриевая проводимость (а часто, одновременно с ней, и калиевая) (рис. 5).

Этот процесс сопровождается деполяризацией и возбуждением мембраны постсинаптической клетки. Под влиянием медиаторов тормозящих увеличиваются проницаемость постсинаптических мембран для ионов хлора и явления гиперполяризации. В ряде случаев медиатор, кроме указанных процессов, влияет на метаболизмы постсинаптического нейрона и тогда фармакологический эффект усложняется.

Рис. 4. Схема нервно-мышечного синапса и фазы передачи возбуждения в нем

А - состояние покоя;

Б - состояние возбуждения;

В - восстановление исходного состояния

1 - окончание нервного волокна;

2 - ацетилхолин;

3 - пресинаптическая мембрана;

4 - постсинаптическая мембрана;

5 - холинорецептор;

6 - мышечное волокно.

Очень важная часть синапсов - своеобразные везикулы, расположенные в основной массе в аксональных окончаниях в непосредственной близости от синаптической мембраны. Везикулы проходят в синаптическую щель и контактируют с постсинаптической мембраной.

Везикулы содержат медиатор, который освобождается под воздействием постсинаптической мембраны и поступает в синаптическую щель или в постсинаптическое образование. Но в последнее время считают, что пресинаптическая мембрана в специализированном для секреции участке производит (секретирует) медиатор. Импульсом для секреции служит вхождение ионов кальция.

Рис. 5.

А. Мембранный потенциал покоя основан на движении наружу некоторого количества ионов калия; меньшее количество ионов натрия проникает в клетку, но концентрации обоих ионов внутри поддерживаются натриевым насосом.

Б. Нервный импульс характеризуется направленным внутрь движением большого количества ионов натрия.

В. Во время наступающего вслед за этим рефрактерного периода проницаемость для ионов натрия снова уменьшается, а затем заметное движение ионов калия наружу восстанавливает состояние покоя.

Освобождающийся медиатор вступает в соединение с хеморецептивным веществом, обусловливая деполяризацию мембраны и сильно повышая проницаемость ее для ионов. Одновременно с этим возникает постсинаптический потенциал, в постсинаптической мембране появляется ток действия мышечного волокна, ток проходит по волокну, и оно сокращается.

Основной функцией синапсов является передача возбуждения, но в них происходит также перестройка и трансформация проходящих импульсов. И этот процесс регулируется центральной нервной системой, превращением премедиаторов и др.

Биологические мембраны - гибкие, лабильные, постоянно обновляющиеся образования, часто называемые мембраной плазмолитической или цитоплазматической. Нужно иметь в виду, что они функционально очень активные поверхностные структуры клеток. Внутри клетки имеются мембраны для всех ее структур — митохондриальные, лизосомальные, ядерные и др.

Мембраны обеспечивают ограничение цитоплазмы и внутриклеточных структур, образуют единую систему канальцев, складов и замкнутых положений в клетке. Они выполняют разные сложные функции жизнедеятельности: формирование клеточных структур, содержание внутриклеточного гомеостаза, участие в процессах возбуждения и проведения нервного импульса, фото-, механо- и хеморецепцию, всасывание, секрецию и газообмен, тканевое дыхание, запасание и трансформацию энергии и т. п.

Совершенно ясно, что все эти функции нарушаются при разных патологических состояниях. Они существенно изменяются под воздействием лекарственных веществ. Роль мембран в механизме действия лекарственных вешеств раскрывается все больше и больше, и для уяснения этого необходимо полнее представлять основы их строения и влияния на физиологические процессы.

Биологические мембраны имеют сложное строение. Содержание липидов в них составляет 25—70%.

Липидный состав очень богатый и легко изменяется; общим является наличие липидов, проявляющих одновременно гидрофильные и гидрофобные свойства.

Разнообразны по составу и белки. Все они частично или полностью пронизывают липидный слой; из белков особое функциональное значение имеют ферменты и белки транспортных систем.

Углеводы содержатся преимущественно в форме гликопротеидов и гликолипидов. Мембранные компоненты обычно имеют все эти соединения и поэтому относительно легко перестраиваются под влиянием очень различных экзогенных и эндогенных факторов. Функция их сложная, и она легко изменяется под влиянием лекарственных веществ.

Очень важной является транспортная функция мембраны, обеспечивающая поддержание внутриклеточного гомеостаза, возбуждение и проведение нервного импульса, трансформацию энергии, процессы метаболизма и др.

Транспорт происходит очень быстро, движение ионов происходит как активно, так и пассивно. Функцию активной резорбции осуществляют специфические липопротеиновые структуры, пронизывающие мембрану. Эти структуры выполняют роль ионных каналов, и селективную активность их обусловливают конфигурация протоков, электрический заряд структур. Важной особенностью для пассивного продвижения ионов натрия и калия является зависимость от количества кальция в клетке (чем она больше, тем легче продвигаются и натрий, и калий).

Активный транспорт хорошо изучен в отношении ионов натрия, калия, кальция и водорода. Для примера можно привести натриево-калиевый насос, функционирующий за счет энергии АТФ.

Предполагают, что натриево-калиевый насос обусловлен липопротеиновой глобулой с двумя белковыми субъединицами, у которой на внутренней стороне мембраны имеются центры связывания АТФ, фосфата и натрия, а на наружной — центры связывания калия.

В результате конформационных перестроек ионосодержащего фосфорилированного фермента ионы натрия и калия освобождаются и транспортируются.

Структура глобулы кальциевого насоса, находящаяся в мембранах саркоплазматического ретикулума, функционирует сходно с натриевым. Основным компонентом насоса является кальцийзависимая АТФ-аза; механизм переноса иона кальция и АТФ-азной реакции включает образование фосфорилированного промежуточного продукта и последующий гидролиз его.

Активный транспорт ионов водорода происходит в сопрягающихся мембранах, где он обеспечивается энергией АТФ-аз.

Перенос неэлектролитов (органических веществ) осуществляется разными механизмами. Он часто совпадает со свободной диффузией, но происходит в 30—50 раз быстрее и поэтому обозначается как облегченная диффузия. В принципе этот транспорт должен выравнивать трансмембранные коэффициенты. И он очень часто изменяется, в связи с тем, что разные неэлектролиты активно включаются в обменные процессы, а от этого количество их быстро меняется.

Полагают, что облегченная диффузия обусловлена прежде всего специфическим узнаванием транспортируемого вещества, связыванием его переносчиком (транспортным белком), затем перенос через мембрану.

В заключение происходит диссоциация транспортированного комплекса. Очень часто процесс облегченной диффузии используется для повышения концентрации транспортируемого вещества. В этих случаях мобилизуется энергия не за счет АТФ, а в виде электрохимического градиента ионов, создаваемого ионными насосами.

Так же сложно, как транспортирование, осуществляется генерация биоэлектрических потенциалов, проведение возбуждения по нервным и мышечным клеткам, а также в местах синаптических окончаний.

Любое лекарственное вещество вызывает несколько изменений функции разных физиологических систем и хода биохимических процессов. И каждое из изменений имеет свои предпосылки или причины, называемые в фармакологии механизмом действия.

Механизмы действия это по существу теории действия, подкрепленные экспериментом.

Любое действие лекарственного вещества начинается с взаимодействия его с определенными структурами клеток или физиологических систем организма. В итоге этого изменяются взаимоотношения, состав или свойства вступившей в реакцию с лекарственным веществом структуры клетки, а как следствие, изменяются взаимоотношения этой структуры с разными органами и системами.

Четкое понимание механизмов действия лекарственных веществ в тех или иных направлениях имеет большое значение для определения наиболее ценного препарата.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: