Элементы новой электродинамики

Вводная часть

Человеческая цивилизация, развиваясь, увеличивает потребление энергии. Темпы роста этого потребления быстро сокращают энергетические ресурсы нашей планеты, заложенные в её недрах. Это стимулирует учёных к поиску новых источников энергии. Но никто из них не обращает внимание на значительные резервы уже существующих электрических энергетических систем. Обусловлено это, элементарной физической ошибкой, введенной математиками, как первопроходцами науки, в процесс измерения электрической энергии. Дальше мы детально проанализируем эту ошибку. Она заложена в математические программы всех электронных электроизмерительных приборов, в том числе и в электронные программы осциллографов, а также реализуется в электронных и в электромеханических счётчиках электроэнергии, параметры которых рассчитываются на основе ошибочных математических формул. А сейчас кратко познакомимся с основными носителями электрической энергии: электронами, протонами и ионами. Детально эти носители описаны в первом томе монографии [1]. Здесь мы представим лишь краткую информацию о них, которая поможет нам понимать процессы рождения, передачи и использования электрической энергии.

ЭЛЕКТРОН

Электрон – главный и в большей части единственный носитель электричества. Он имеет тороидальную структуру (рис. 1, а) с двумя вращениями: относительно центральной оси и относительно кольцевой оси полого тора. На рисунке 1, а показана лишь часть магнитных силовых линий электрона. Если показать всю их совокупность, то электромагнитная форма электрона будет близка к форме яблока. Со стороны плодоножки яблока располагается южный магнитный полюс электрона, в который входят магнитные силовые линии, а в верхней части – северный магнитный полюс из которого выходят магнитные силовые линии. Давно условились считать, что заряд электрона отрицательный, поэтому, как считалось, электроны всегда только отталкиваются друг от друга. Однако, уже имеются экспериментальные данные, доказывающие формирование электронных кластеров (рис. 1, b). Новая теория электрона объясняет этот факт тем, что разноимённые магнитные полюса могут сближать электроны, а одноимённые электрические заряды ограничивать их сближение. В результате образуются кластеры электронов (рис. 1, b). Это неустойчивые структуры. Они легко разрушаются.

 

а) b)

 

Рис. 1. а) схема теоретической модели электрона

(показана лишь часть магнитных силовых линий);

b) схема электронного кластера;

 

Формирование тороидальной структуры электрона описывается, примерно, 50-ю математическими моделями, в которых содержатся 23 константы. Главная из них – радиус осевой линии тора. Он рассчитывается по нескольким математическим моделям, которые дают один и тот же результат. Вот одна из таких моделей

 

. (1)

 

Теоретическая величина радиуса кольцевой оси тора свободного электрона (рис. 1, a) строго постоянна и равна . Она отличается от его экспериментальной величины в 6-м знаке после запятой .

Угловая скорость вращения свободного электрона определяется по формуле

 

(2)

 

Напряженность магнитного поля внутри тороидальной модели электрона равна

 

(3)

 

Напряженность электрического поля на поверхности тора очень большая

 

. (4)

 

Это, можно сказать, колоссальная напряженность. Она превосходит напряжённости электрических полей, созданных человеком, почти на восемь порядков. Следующая важная информация: векторы магнитного момента электрона и его спина направлены вдоль ост вращения от южного магнитного полюса к северному (рис. 1).

 

Протон и нейтрон

Модель протона в виде сплошного тора (рис. 2) подтверждается расчётами его параметров, совокупность которых даёт ряд величин, соответствующих их экспериментальным значениям. Один из таких параметров – радиус осевой линии тора (рис. 2). Его величина (5) близка к интервалу изменения размеров ядер атомов , в состав которых входит протон.

 

. (5)

 

 

Рис. 2. Модель протона

 

Если протон имеет форму тора, заполненного эфирной субстанцией, то объёмная плотность этой субстанции должна быть близка к плотности ядер атомов .

 

(6)

 

Напряженность магнитного поля вблизи геометрического центра протона можно рассчитать, используя его фотонную энергию , по формуле

 

(7)

 

Напряжённость электрического поля на поверхности тора протона на 8 порядков больше соответствующей напряжённости у электрона.

 

. (8)

 

Протон отличается от электрона не только тем, что его тор сплошной, но и тем, что векторы магнитного момента и спина протона направлены противоположно друг другу (рис. 2). Это очень важное отличие, которое играет решающую роль при формировании ядер, атомов, молекул и кластеров. Но для нас важно знать, как ведут себя электроны и протоны, находясь вблизи друг друга. Они сближаются линейно. Здесь возможны два варианта и оба они подтверждаются экспериментально.

Если процессом сближения электрона и протона управляют их разноимённые электрические заряды и разноимённые магнитные полюса, то протон поглощает электрон и превращается в нейтрон. Известно, что разность между массой нейтрона и протона равна . Масса нейтрона (рис. 3) больше массы протона на 2,531 масс электрона (). Из этого следует, чтобы протон стал нейтроном, он должен захватить 2,531 электрона.

Поскольку не существует электронов с дробной массой, то протон должен поглощать целое число электронов. Если он поглотит три электрона, а его масса увеличится только на 2,531 масс электрона, то возникает вопрос: куда денется остаток массы электрона ?

 

Рис. 3. Схема модели нейтрона

 

Современная физика нарушенный баланс масс в этом процессе объясняет просто: рождением нейтрино, которое не имеет заряда, поэтому, как считается, её очень сложно зарегистрировать. Однако уже есть более правдоподобная гипотеза: не поглощённая часть электрона разрушается, превращаясь в эфир, из которого сотоят все элементарные частицы.

Если процесс сближения электрона с протоном управляется их разноимёнными электрическими зарядами и одноимёнными магнитными полюсами, которые ограничивают их сближение, то образуется атом водорода (рис. 4), который существует лишь в плазменном состоянии в интервале температур 2700-10000 град. Из этого факта автоматически следует невозможность совместного существования свободных электронов и протонов и ошибочность всей электродинамики и статики. Но мы не будем отвлекаться на анализ этих проблем, так как они детально описаны в монографии [1]. Нас интересует лишь та информация об электронах и протонах, которая необходима для анализа участия этих элементарных частиц в формировании, передаче и приёме электрической энергии. Началом этой информации является новая электродинамика взаимодействия основных носителей электрической энергии.

 

Рис. 4. Теоретическая модель атома водорода и его размеры в невозбуждённом состоянии

Электродинамика – раздел физики, в котором изучаются носители электричества, формируемые ими электрические и магнитные поля, а также взаимодействия между ними. Она родилась в начале 19-го века, во времена Фарадея и Максвелла.

Экспериментальной основой существующей электродинамики является закон электромагнитной индукции, открытый Майклом Фарадеем в 1831 году. Суть этого закона кратко можно выразить так: переменное электрическое поле создаёт магнитное поле, а переменное магнитное поле создаёт электрическое поле. На основании этого считается, что работа электромоторов, электрогенераторов, трансформаторов и других многочисленных электротехнических устройств – результат взаимодействия электрических и магнитных полей. Проверим связь таких представлений с реальностью.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: