Длина свободного пробега и эффективный диаметр молекул

Эффективный диаметр молекул

В случае соударения двух одинаковых шаров минимальное расстояние между центрами шаров равно их диаметру. Поэтому эффективным диаметром молекулы d называют минимальное расстояние, на которое сближаются при соударении центры двух молекул.

Ясно, что эффективный диаметр молекулы зависит от скорости их сближения (кинетической энергии на большом расстоянии), а значит - от температуры.

Длина свободного пробега молекулы — это среднее расстояние (обозначаемое ), которое частица пролетает за время свободного пробега от одного столкновения до следующего.

Длина свободного пробега каждой молекулы различна, поэтому в кинетической теории вводится понятие средней длины свободного пробега (<λ>). Величина <λ> является характеристикой всей совокупности молекул газа при заданных значениях давления и температуры.

Формула

, где — эффективное сечение молекулы, — концентрация молекул.

 

Явления переноса

Явления переноса в газах и жидкостях состоят в том, что в этих веществах возникает упорядоченный, направленный перенос массы (диффузия), импульса (внутренняя энергия) и внутренней энергии (теплопроводность). При этом в газах нарушается полная хаотичность движения молекул и распределение молекул по скоростям. Отклонениями от закона Максвелла объясняется направленный перенос физических характеристик вещества в явлениях переноса.

1. Теплопроводность.

Явление теплопроводности наблюдается, если в различных частях рассматриваемого газа температуры различны. Рассмотрение явления теплопроводности с микроскопической точки зрения показывает, что количество теплоты переносимое через площадку ΔS, перпендикулярную направлению переноса прямо пропорционально коэффициенту тепло проводимости χ, зависящему от рода вещества или газа, градиенту температуры , величины площадки ΔS и времени наблюдения Δt

Знак минус в законе Фурье показывает, что теплота переносится в направлении убывания температуры Т.

 

Коэффициент теплопроводности χ равен

где удельная теплоёмкость газа при постоянном объёме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объёме).

плотность газа, средняя скорость теплового движения молекул

средняя длина свободного пробега.

Диффузия

Явление диффузии заключается в самопроизвольном перемешивании молекул различных газов или жидкостей.

Рассмотрение явления самодиффузии с макроскопической точки зрения было сделано Фиком, который установил следующий закон: масса газа, переносимая через площадку ΔS, перпендикулярную к направлению переноса за время Δt прямо пропорциональна коэффициенту самодиффузии D, зависящему от рода газа, градиенту плотности , величине площадки ΔS и времени наблюдения Δt.

Знак минус показывает, что масса газа переносится в направлении убывания плотности. Коэффициент самодиффузии D численно равен массе газа переносимой за единицу времени через единичную площадку перпендикулярную направлению переноса, при градиенте плотности равном единице

Внутренняя энергия термодинамической системы число степеней свободы

Важной характеристикой термодинамиче­ской системы является ее внутренняя энергия U — энергия хаотического (тепло­вого) движения микрочастиц системы (молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц. Из этого определения следует, что к внутрен­ней энергии не относятся кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях.

Внутренняя энергия — однозначная функция термодинамического состояния системы, т. е. в каждом состоянии система обладает вполне определенной внутренней энергией (она не зависит от того, как система пришла в данное состояние). Это

означает, что при переходе системы из одного состояния в другое изменение внут­ренней энергии определяется только раз­ностью значений внутренней энергии этих состояний и не зависит от пути перехода. В § 1 было введено понятие числа степеней свободы — числа независимых переменных (координат), полностью опре­деляющих положение системы в простран­стве. В ряде задач молекулу одноатомного газа (рис. 77, а) рассматривают как мате­риальную точку, которой приписывают три

степени свободы поступательного движе­ния. При этом энергию вращательного движения можно не учитывать (r—>0,J= mr2®0, T вр=Jw2/2®0).

В классической механике молекула двухатомного газа в первом приближении рассматривается как совокупность двух материальных точек, жестко связанных недеформируемой связью (рис. 77,б). Эта система кроме трех степеней свободы по­ступательного движения имеет еще две степени свободы вращательного движе­ния. Вращение вокруг третьей оси (оси, проходящей через оба атома) лишено смысла. Таким образом, двухатомный газ обладает пятью степенями свободы (i=5). Трехатомная (рис. 77,0) и многоатомная нелинейные молекулы имеют шесть степе­ней свободы: три поступательных и три вращательных. Естественно, что жесткой связи между атомами не существует. По­этому для реальных молекул необходимо учитывать также степени свободы колеба­тельного движения.

Независимо от общего числа степеней свободы молекул три степени свободы всегда поступательные. Ни одна из по­ступательных степеней свободы не имеет преимущества перед другими, поэтому на каждую из них приходится в среднем оди­наковая энергия, равная 1/3значения <e0)в (43.8):

В классической статистической физике выводится закон Больцмана о равномер­ном распределении энергии по степеням свободы молекул: для статистической системы, находящейся в состоянии термо­динамического равновесия, на каждую по­ступательную и вращательную степени свободы приходится в среднем кинетиче­ская энергия, равная kT/2, а на каждую колебательную степень свободы — в сред­нем энергия, равная kT. Колебательная степень «обладает» вдвое большей энер­гией потому, что на нее приходится не только кинетическая энергия (как в слу­чае поступательного и вращательного дви­жений), но и потенциальная, причем сред­ние значения кинетической и потенциальной энергий одинаковы. Таким образом, средняя энергия молекулы

где i — сумма числа поступатель­ных, числа вращательных и удвоенного числа колебательных степеней свободы молекулы:

i =i пост+ i вращ+2 i колеб.

В классической теории рассматривают молекулы с жесткой связью между атома­ми; для них i совпадает с числом степеней свободы молекулы.

Так как в идеальном газе взаимная потенциальная энергия молекул равна ну­лю (молекулы между собой не взаимодей­ствуют), то внутренняя энергия, отнесен­ная к одному молю газа, будет равна сумме кинетических энергий NA молекул:

Внутренняя энергия для произвольной массы т газа

где М — молярная масса,v — количе­ство вещества.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: