Лекция 2 Архитектура современных компьютеров. Основные устройства компьютера, их функции и взаимосвязь. Магистрально-модульный принцип построения компьютера

Понятие архитектуры применительно к ЭВМ очень четко и с указанием истории происхождения термина сформулировал Э.Таненбаум, который в своей книге писал: “К концу 50-х годов компания IBM, которая лидировала тогда на компьютерном рынке, решила, что производство семейства компьютеров, каждый из которых выполняет одни и те же команды, имеет много преимуществ и для самой компании, и для покупателей. Чтобы описать этот уровень совместимости, компания IBM ввела термин архитектура. Новое семейство компьютеров должно было иметь одну общую архитектуру и много разных разработок, различающихся по цене и скорости, которые могли выполнять одну и ту же программу”. Проще говоря, под архитектурой понимается все то общее в устройстве машин, что позволяет использовать на них одно и то же программное обеспечение.

Итак, целью строгой стандартизации основополагающих принципов служит вполне понятное прагматическое стремление: все машины одного семейства независимо от их конкретного устройства и фирмы-производителя должны быть способны выполнять одну и ту же программу.

Семейство ЭВМ — это группа моделей машин, программно совместимых между собой. В пределах одного семейства основные принципы функционирования всех ЭВМ одинаковы, хотя отдельные модели могут существенно различаться по элементной базе, конкретной конструкции устройств, производительности, объему памяти, стоимости и другим параметрам. Особо подчеркнем, что к архитектуре относится именно наиболее общее логическое построение вычислительных средств, без учета конкретных деталей их реализации. Вопросы физического построения образуют отдельный круг проблем, который, согласно [2], принято определять понятием организация. Архитектура и организация — это две дополняющие друг друга стороны описания ЭВМ.

Современным примером общей архитектуры вычислительной техники служат заполнившие мир IBM-совместимые персональные компьютеры, успешно производимые во множестве стран.

Что же обычно относят к архитектуре ЭВМ? Не претендуя на полный охват, назовем наиболее важное: методы выполнения команд программы и влияние анализа тех или иных условий на порядок их выполнения, способы доступа к памяти и внешним устройствам, возможности изменения конфигурации оборудования, принципы построения системы команд и их кодирования, форматы данных и особенности их машинного представления.

Нас будут интересовать те, которые связаны с функциями и взаимодействием основных логических узлов компьютера.

Несмотря на огромное разнообразие вычислительной техники и ее необычайно быстрое совершенствование, фундаментальные принципы устройства машин, являющиеся составной частью архитектуры, во многом остаются неизменными. В частности, начиная с самых первых поколений, любая ЭВМ состоит из следующих основных устройств: процессор, память (внутренняя и внешняя) и устройства ввода и вывода информации. Рассмотрим более подробно назначение каждого из них.

Процессор является главным устройством компьютера, в котором собственно и происходит обработка всех видов информации. Другой важной функцией процессора является обеспечение согласованного действия всех узлов, входящих в состав компьютера. Соответственно названным функциям, наиболее важными частями процессора являются арифметико-логическое устройство АЛУ и устройство управления УУ.

Каждый процессор способен выполнять вполне определенный набор универсальных инструкций, называемых чаще всего машинными командами. Каков именно этот набор, определяется устройством конкретного типа процессора, но он не очень велик и в основном аналогичен даже для различных семейств процессоров. Работа ЭВМ состоит в выполнении последовательности таких команд, подготовленных в виде программы. Процессор способен организовать считывание очередной команды, ее анализ и выполнение, а также при необходимости принять данные или отправить результаты их обработки на требуемое устройство. Выбрать, какую инструкцию программы исполнять следующей, также должен сам процессор, причем результат этого выбора может зависеть от обрабатываемой в данный момент информации (условные переходы).

Хотя внутри процессора всегда имеются специальные ячейки (регистры) для оперативного хранения обрабатываемых данных и некоторой служебной информации, в нем сознательно не предусмотрено место для хранения программы. Для этой важной цели в компьютере служит другое устройство — память. Память предназначена для хранения как данных, так и программ их обработки: согласно фундаментальному принципу хранимой программы [3], для обоих типов информации используется единое устройство.

Начиная с самых первых ЭВМ, память стали делить на внутреннюю и внешнюю. Исторически это действительно было связано с размещением внутри или вне процессорного шкафа. Однако с уменьшением размеров блоков машин внутрь основного процессорного корпуса удавалось поместить все большее количество устройств, и первоначальный непосредственный смысл данного деления постепенно утратился. Тем не менее терминология сохранилась.

Под внутренней памятью современного компьютера принято понимать быстродействующую электронную память, расположенную на его системной плате. В настоящее время такая память изготавливается на базе самых современных полупроводниковых технологий (раньше использовались магнитные устройства на основе ферритовых сердечников — лишнее свидетельство тому, что конкретные физические принципы значения не имеют).

Наиболее существенная часть внутренней памяти называется ОЗУ оперативное запоминающее устройство. Его главное назначение состоит в том, чтобы хранить данные и программы для решаемых в текущий момент задач. Упомянем также о постоянном запоминающем устройстве (ПЗУ), в котором, в частности, хранится информация, необходимая для первоначальной загрузки компьютера в момент включения питания (для лучшего понимания можно указать на некоторую аналогию между информацией в ПЗУ и “врожденными” безусловными рефлексами у живых существ). Раньше содержимое ПЗУ раз и навсегда формировалось на заводе, теперь же современные технологии позволяют в случае необходимости аккуратно обновлять его, даже не извлекая из компьютерной платы.

Внешняя память реализуется в виде довольно разнообразных устройств длительного хранения информации и обычно конструктивно оформляется как самостоятельные блоки. Сюда прежде всего следует отнести накопители на гибких и жестких магнитных дисках (последние пользователи часто жаргонно именуют винчестерами), а также оптические дисководы (устройства для работы с CD- и DVD-дисками). В конструкции всех перечисленных устройств внешней памяти имеются механически движущиеся части, поэтому скорость их работы существенно ниже, чем у полностью электронной внутренней памяти. Тем не менее внешняя память позволяет сохранить огромные объемы информации с целью последующего использования. Подчеркнем, что информация во внешней памяти прежде всего предназначена для самого компьютера и поэтому хранится в удобной ему форме; человек без использования машины не в состоянии, например, даже отдаленно представить содержимое немаркированной дискеты или диска CD-ROM.

В последнее время все более широкое распространение получают накопители на основе флэш-памяти. Данная разновидность памяти способна сохранять информацию на базе полупроводниковых технологий и не имеет движущихся частей. Все чаще и чаще высказывается мнение, что флэш-память вскоре существенно потеснит дисковые накопители информации.

Современные программные системы способны объединять внутреннюю и внешнюю память в единое целое, причем так, чтобы наиболее редко используемая информация попадала в более медленно работающую внешнюю память. Такой метод носит название виртуальной памяти и дает возможность очень существенно расширить объем обрабатываемой с помощью компьютера информации.

Для получения информации о результатах необходимо дополнить компьютер устройствами вывода, которые позволяют представить их в доступной человеческому восприятию форме. Наиболее распространенным устройством вывода является дисплей, способный быстро и оперативно отображать на своем экране как текстовую, так и графическую информацию. Для того чтобы получить копию результатов на бумаге, используют печатающее устройство, или принтер Для вывода звуковой информации используются звуковые колонки, наушники.

Наконец, поскольку пользователю часто требуется вводить в компьютерную систему новую информацию, необходимы еще и устройства ввода. Простейшим устройством ввода является клавиатура. Широкое распространение программ с графическим интерфейсом способствовало популярности другого устройства ввода — манипулятора “мышь”. К устройствам-манипуляторам, кроме мыши, относятся трекбол и джойстик. Наконец, очень эффективным современным устройством для автоматического ввода информации в компьютер является сканер, позволяющий не просто преобразовать картинку с листа бумаги в графическое компьютерное изображение, но и с помощью специального программного обеспечения распознать в прочитанном изображении текст и сохранить его в виде, пригодном для редактирования в обычном текстовом редакторе. К устройствам бесклавиатурного ввода также относят некоторые сенсорные устройства (оптические перья, сенсорные интерактивные доски и др.), устройство распознавания речи, цифровые фотоаппараты и видеокамеры.

Теперь, когда мы знаем основные устройства компьютера и их функции, осталось выяснить, как они взаимодействуют между собой. Для этого обратимся к упрощенной функциональной схеме компьютера, приведенной на рисунке.

Для связи основных устройств компьютера между собой используется специальная информационная магистраль, чаще называемая шиной. Шина состоит из трех следующих частей:

· · шина адреса, на которой устанавливается адрес (номер) требуемой ячейки памяти или устройства, с которым будет происходить обмен информацией;

· · шина данных, по которой собственно и будет передана необходимая информация; и, наконец,

· · шина управления, регулирующая этот процесс (например, один из сигналов на этой шине позволяет компьютеру различать между собой адреса памяти и устройств ввода/вывода).

Рассмотрим в качестве примера, как процессор читает содержимое ячейки памяти. Убедившись, что шина в данный момент свободна, процессор помещает на шину адреса требуемый адрес и устанавливает необходимую служебную информацию (операция — чтение, устройство — ОЗУ и т.п.) на шину управления. Теперь ему остается только ожидать ответа от ОЗУ. Последнее, “увидев” на шине обращенный к нему запрос на чтение информации, извлекает содержимое необходимой ячейки и помещает его на шину данных, оповещая процессор по шине управления о готовности данных. Разумеется, реальный процесс значительно подробнее и допускает различные вариации и усовершенствования, но нас сейчас не интересуют технические детали.

В современных компьютерах обмен по шине в некоторых случаях может происходить и без непосредственного участия центрального процессора, например, между устройством ввода и внутренней памятью. В этом случае руководство процессом обмена берет на себя специализированная интеллектуальная микросхема — контроллер. Типичными примерами организации прямого доступа к памяти могут служить чтение файла с диска или вывод потока данных из ОЗУ на звуковую карту.

Подчеркнем, что описанная учебная функциональная схема на практике значительно сложнее. Современный компьютер может содержать несколько согласованно работающих процессоров, прямые информационные каналы между отдельными устройствами, несколько взаимодействующих магистралей и т.д. Тем не менее, если понимать наиболее общую схему, то разобраться в конкретной компьютерной системе будет уже легче.

Магистральная структура позволяет легко подсоединять к компьютеру именно те внешние устройства, которые нужны для данного пользователя. Благодаря ей удается скомпоновать из стандартных блоков (модулей) практически любую индивидуальную конфигурацию компьютера. Описанный метод реализации современных вычислительных устройств часто называют магистрально-модульным принципом построениякомпьютера.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: