Конструкция и принцип действия синхронного генератора

Лекция 7. Электрооборудование электрических станций

 

Синхронные генераторы

Конструкция и принцип действия синхронного генератора

Фактически вся промышленная электрическая энергия в развитых странах вырабатывается на тепловых (ТЭС), гидравлических (ГЭС) и атомных (АЭС) электростанциях. В разных странах доля электроэнергии, производимой на различного вида электростанциях, неодинакова. В России в настоящее время тепловые электростанции дают примерно (69—70) %, атомные и гидравлические — по 15 % общего количества электроэнергии. Стоимость единицы вырабатываемой электроэнергии на каждом из этих трех видах станций резко различается. Различны капитальные затраты при их сооружении, расходы на эксплуатацию, уровень автоматизации, степень надежности, зависимость от сезона и особенностей их климатического и географического расположения и многих других обстоятельств. Объединяет их только одно. Они обязаны вырабатывать ток стандартной частоты 50 Гц, необходимого уровня напряжения для той сети, к которой присоединяются электрические машины, работающие в режиме генераторов переменного тока, установленных на каждой из станций. Абсолютное равенство частот напряжения сотен одновременно работающих генераторов может быть обеспечено только одним — специальным типом этих электрических машин — синхронными генераторами (СГ). Все электрические машины обладают свойством обратимости. Любой электрический генератор может работать как двигатель, т.е. преобразовывать электрическую энергию в механическую. На каждой электростанции установлено большое число электродвигателей, удовлетворяющих собственные нужды станции. 95% электроэнергии на электрических станциях мира производится при помощи синхронных генераторов.

Синхронные генераторы (СГ) предназначены для преобразования механической энергии паровой, газовой или гидравлической турбины в электрическую энергию.

 
 

СГ состоит из неподвижной части – статора1, который называют якорем, и подвижной части – ротора, который находится на одном валу с турбиной (рис.1).

Ротор может быть выполнен с сосредоточенной обмоткой. В этом случае ротор и сам генератор называются явнополюсными. Если обмотка ротора является распределенной, ротор и генератор называются неявнополюсными.

На рис. 1 схематично показано поперечное сечение синхронной явнополюсной машины с четырьмя полюсами на роторе 2 чередующейся полярности N-S-N-S. Ротор приводится во вращение источником механической энергии. Чаще всего — это паровая, газовая или гидравлическая турбина, создающая механический вращающий момент. На вращающуюся обмотку возбуждения 4 подается постоянный ток через контактные кольца 5, которые располагаются на валу. Сосредоточенная обмотка возбуждения 4, размещена на стальном сердечнике. При протекании по обмотке постоянного тока возбуждается магнитное поле ротора, образуются разноименные полюса. При вращении ротора его магнитное поле пересекает стальные сердечники статора, где появляется переменное магнитное поле с циклической частотой (угловой скоростью) ω=2π f. В обмотке статора индуцируется ЭДС индукции. Частота ЭДС f равна произведению частоты вращения ротора n в оборотах в секунду на число пар полюсов ротора р (на рис. 1 p = 2, т.е. число полюсов 2 р = 4),т.е. f = р* n –это частота вращения ротора. ЭДС будет равно

εi=NBSω sin(ωt),

где N –число витков обмотки возбуждения;

B – магнитная индукция;

S – сечение сердечника.

Частота вращения турбины может быть различной — в диапазоне от десятков до сотен и даже тысяч оборотов в минуту: ниже для гидравлических турбин и выше для остальных видов.  

Большинство турбогенераторов страны имеют число пар полюсов равное единице, значит для сети 50 Гц n = f / р = 50 об/с или n 2 = 60 f / р = 3000 об/мин. Для стран, где принята частота напряжения 60 Гц (США, Япония и др.), частота вращения ротора составит 3600 об/мин. Чем медленнее вращается ротор, тем больше должно быть при заданной частоте тока пар полюсов: ГЭС Итайпу- частота 50Гц, 33 пары полюсов.

При присоединении генератора к нагрузке, т.е. к потребителю электрической энергии или к электрической сети, ЭДС обмотки статора создает в ней ток. Обмотка статора — трехфазная, поэтому протекающие по ней токи — тоже трехфазные. Они создают вращающееся со скоростью ротора магнитное поле. Магнитное поле обмотки статора вращается с той же частотой вращения, что и ротор. Таким образом, в синхронном генераторе оба магнитных поля: обмотки ротора, созданное постоянным током возбуждения, и обмотки статора, созданное переменными токами трехфазной обмотки, оказываются взаимно неподвижными, вращающимися синхронно. Взаимодействие магнитных полей ротора и статора создает электромагнитный момент, направленный в генераторном режиме электрической машины навстречу механическому моменту, созданному паровой, газовой или гидравлической турбиной. В случае равенства этих двух моментов ротор генератора будет вращаться с постоянной скоростью, обеспечивая индуктирование стабильной частоты ЭДС обмотки статора, совпадающей с частотой напряжения сети. Это нормальный синхронный режим работы генератора, когда частота вращения (угловая скорость) ротора определяется частотой напряжения сети. Задачей персонала является регулирование подачи на турбину, создающую механический момент, требуемого количества агента (пара, газа, воды) необходимых параметров для обеспечения равновесия вращающего и тормозящего электромагнитного моментов. При аварийном отключении генератора от нагрузки токи статора становятся равными нулю. Электромагнитный тормозящий момент также исчезает, а из-за сохраняющегося вращающего механического момента ротор начинает разгоняться сверх номинальной скорости до тех пор, пока не будет прекращена подача агента (т.е. пара, газа, воды) на турбину. Наиболее быстро это можно осуществить для паровой или газовой турбин. Частота вращения при этом успевает возрасти на 10—20 %. Гораздо сложнее остановить поток воды. В зависимости от типа применяемого гидравлического колеса частота вращения может возрасти в процессе прекращения подачи воды в 1,8—3,5 раза по сравнению с номинальной. Эта предельно возможная частота вращения ротора при наиболее неблагоприятном отказе системы регулирования подачи воды в турбину носит название угонной частоты вращения, или угонной скорости. Механическая прочность ротора генератора рассчитывается так, чтобы при угонной частоте вращения механические напряжения в элементах ротора из-за действующих центробежных сил, пропорциональных квадрату частоты вращения, не превосходили пределов текучести материалов ротора. Деформация обода ротора не должна превышать размера воздушного зазора. После того как гидрогенератор вращался с угонной частотой вращения, его останавливают для тщательного осмотра, контроля всех креплений, а в случае необходимости, и для ремонта. В соответствии с ГОСТ все гидрогенераторы должны в течение 2 мин выдерживать без остаточных деформаций повышенную частоту вращения, равную 1,75 номинальной.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: