Тепловые явления при резании металлов

При снятии стружки вся работа резания превращается в эк­вивалентное количество теплоты. Теплообразование оказывает значительное влияние на процесс резания. С одной стороны, оно облегчает деформирование материала срезаемого слоя, вследст­вие чего уменьшается интенсивность изнашивания инструмен­та и повышается качество обработанной поверхности. С другой стороны, повышение температуры до 800...1000 °С вблизи ре­жущей кромки инструмента приводит к изменению структуры и физико-механических свойств его материала, что обусловли­вает потерю режущей способности инструмента.

Механическая энергия, затрачиваемая на деформирование, разрушение и трение, переходит в тепловую, и только небольшая ее часть накапливается в виде потенциальной энергии искаженной
решетки материала в зоне деформирования. В первом прибли­жении количество выделяющейся в единицу времени теплоты можно подсчитать по следующей формуле:

Q = P,v,

где Рг — сила резания, Н;v—скорость резания, м/с.

Теплота образуется в результате упругопластического дефор­мирования в зоне стружкообразования, трения стружки о перед­нюю поверхность инструмента и заготовки о задние поверхности (рис. 21.12, а). Тепловой баланс процесса резания можно выра­зить в следующем виде:

фд + фц.п+ Q,.n= Чс +?3аг +?и +?окр.

гдеQr— количество теплоты, выделяющееся при упругопласти- ческой деформации обрабатываемого материала; (?п п — количе­ство теплоты, выделяющееся при трении стружки о переднюю поверхность инструмента; Q3„ — количество теплоты, выделяю­щееся при трении задних поверхностей инструмента о заготовку; <7С — количество теплоты, отводимое стружкой; q3&T— количест­во теплоты, отводимое заготовкой;q„— количество теплоты, от­водимое инструментом; q0Kp— количество теплоты, отводимое в окружающую среду.

е°с=f(v)

 

v, S, t

Рис. 21.12. Тепловые явления: а — тепловой баланс процесса резания; б — влияние v, S, t на температуру инструмента

В зависимости от технологического метода и условий обработ­ки со стружкой уносится 25...85 % всей выделившейся теплоты, заготовкой — 10...15, инструментом — 2...8 %. Наибольшее влияние на температуру инструмента оказывают скорость, по­дача и глубина резания (рис. 21.12, б). С повышением скорости
резания температура растет, но чем выше скорость резания, тем медленнее повышается температура, так как при высоких скоро­стях большее количество тепла отводится стружкой, уменьша­ются пластические деформации и силы резания. С увеличением подачи и глубины резания температура инструмента также не­сколько возрастает, однако необходимо учитывать, что с увеличе­нием глубины резания увеличивается протяженность контакта между инструментом и деталью, что уменьшает приток тепла на единицу длины режущего лезвия.

С уменьшением переднего угла у увеличивается сила резания и, следовательно, температура резания. С уменьшением угла в плане ф удлиняется активная часть режущей кромки и за счет этого улучшается теплоотвод.

а

Р.-Р.

850 800

400 500 600

Рис. 21.13.Температурное поле резца и стружки: а — на передней поверхности; б — в главной секущей плоскости

б

Кроме температуры необходимо знать температурное поле в зоне резания. Под температурным полем понимается сово­купность различных значений температур во всех точках опре­деленного участка деформированного слоя или инструмента в определенный момент. На рис. 21.13 приведены изотермы температурного ноля резца и стружки при точении без охлажде­ния резцом из твердого сплава Т14К8 стали ШХ15 (и = 80 м/мин; t= 4,1 мм; S = 0,5 мм/об). Как видно из рисунка, наибольшая температура у места контакта стружки с передней поверхностью инструмента.

Применение смазочно-охлаждающих технологических сред (СОТС) способствует снижению температуры резания, увеличе­нию стойкости инструмента, улучшению качества обработанной поверхности и снижению силы резания. СОТС оказывают благо­приятное действие на процесс резания, поскольку:

□ уменьшают коэффициент трения между контактирующи­ми поверхностями;

□ облегчают процесс деформации срезаемого слоя металла;

□ снижают силы резания;

□ понижают температуру в зоне резания, охлаждая инстру­мент и поверхность детали;

□ уменьшают температурные деформации деталей в процес­се обработки.

В зависимости от технологического метода обработки, свойств обрабатываемого материала и инструмента, а также режимов ре­зания используют различные виды СОТС: твердые, жидкие, пла­стичные и газообразные.

К твердым СОТС относятся: неорганические материалы (тальк, слюда, графит, бура, нитрид бора, дисульфиды молибде­на, вольфрама и титана, сульфат серебра); органические соеди­нения (мыло, воск, твердые жиры); металлические пленочные покрытия (медь, латунь, свинец, олово, барий, цинк).

К смазочнб-охлаждающим жидкостям (СОЖ) относятся: вод­ные растворы минеральных электролитов, эмульсий; минераль­ные, животные и растительные масла с добавками фосфора, серы и хлора (сульфофрезолы); керосин и растворы поверхностно-ак­тивных веществ в керосине; масла и эмульсии с добавками твер­дых смазывающих веществ; расплавы металлов, солей и других веществ. СОЖ получили наибольшее применение в машино­строении.

К пластичным СОТС относятся густые мазеобразные продук­ты, которые получают путем загущения минеральных и синте­тических масел.

К газообразным СОТС относятся воздух, азот, двуокись угле­рода, кислород, пары поверхностно-активных веществ, распы­ленные жидкости.

Выбор СОТС в каждом конкретном случае зависит от техноло­гического метода и режима обработки, а также физико-механи­ческих свойств обрабатываемого и инструментального материала. При черновой и получистовой обработках, когда требуется эф­
фективное охлаждающее действие среды, применяют водные растворы электролитов и поверхностно-активных веществ, мас­ляные эмульсии. При чистовой обработке применяют чистые и активированные минеральные масла. Под влиянием высоких температур и давлений эти вещества образуют на поверхности заготовок соединения (фосфиды, хлориды, сульфиды), снижаю­щие трение. При обработке хрупких материалов (чугун, бронза) твердосплавным инструментом в качестве СОТС используют газы (сжатый воздух, углекислый газ).


 


а
1 От яяпоса Рис. 21.14.Способы подвода СОТС в зону резания: а — на поверхность инструмента; б — внутреннее охлаждение

б


 


Эффективность действия СОТС зависит от способа подвода их в зону резания. Наиболее распространенной является подача эмульсии через сопло на переднюю поверхность инструмента под давлением 0,05...0,2 Па (рис. 21.14, а). Этот метод требует большого расхода жидкости (10... 15 л/мин). Более эффективно высоконапорное охлаждение, когда жидкость подают тонкой струей под давлением 1,5...2 МПа со стороны задних поверхно­стей инструмента (расход жидкости приблизительно 0,5 л/мин;). Если подвод жидкости в зону резания затруднен, например при сверлении, то применяют внутреннее охлаждение инструмента (рис. 21.14, б), для чего в нем делают каналы, по которым про­качиваются СОТС.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: