double arrow

Экспериментальная часть. Приборы и оборудование: лабораторная установка, микрометр, линейка, штангенциркуль, секундомер, шарики

 

Приборы и оборудование: лабораторная установка, микрометр, линейка, штангенциркуль, секундомер, шарики.

Метод определения

 

Этот метод основан на измерении скорости установившегося движения твердого шарика в вязкой среде под действием постоянной внешней силы, в простейшем случае – силы тяжести.

Выведем рабочую формулу для определения коэффициента вязкости методом Стокса. Если взять шарик большей плотности, чем плотность жидкости, то он будет тонуть, опускаясь на дно сосуда. На падающий шарик действуют три силы (рис.15.3):

1. сила вязкого трения F С по закону Стокса (15.6), направленная вверх, навстречу скорости: F С= 6 πηr v;

2. сила тяжести, направленная вниз:

, (15.7)

где – масса шарика; – плотность шарика; – ускорение свободного падения; – объем шарика, равный:

; (15.8)

3. выталкивающая сила F Арх, согласно закону Архимеда, равная весу вытесненной жидкости:

F Арх = ж g, (15.9)

где – плотность жидкости.

Запишем уравнение движения (второй закон Ньютона) для падающего шарика в проекциях на вертикальную ось:

ma=F тяжF АрхF С. (15.10)

Сила тяжести и выталкивающая сила не зависят от скорости движения шарика. Сила трения в законе Стокса прямо пропорциональна скорости. Поэтому на некотором начальном участке l0 (рис.15.3) падения шарика в жидкости, пока скорость мала, сила трения меньше разности сил тяжести и выталкивающей, и шарик в результате движется с ускорением. Величину участка l0 можно оценить из уравнения движения (см. дальше).

По мере нарастания скорости падения шарика растет сила вязкого трения. С момента достижения равенства

F С = F тяжF Арх (15.11)

сумма сил, действующих на шарик, становится равной нулю, и шарик, в соответствии с первым законом Ньютона, движется по инерции равномерно, с набранной им к этому моменту скоростью.

По измеренной скорости установившегося падения шарика можно найти коэффициент вязкости жидкости η.

После подстановки в (15.11) выражений (15.6-15.9) получим:

после сокращения и замены радиуса шарика через его диаметр , :

или:

. (15.12)

Из (15.12) выразим коэффициент динамической вязкости:

. (15.13)

Наконец, скорость v шарика выражаем через пройденный путь и время падения : :

. (15.14)

Выведенная формула (15.14) для расчета коэффициента вязкости, как и формула Стокса (15.6), получены в предположении, что шарик движется в сосуде неограниченного объема. При движении шарика по оси цилиндрического сосуда конечного диаметра D в формуле (14) необходимо учесть влияние стенок сосуда. Уточненная рабочая формула имеет вид:

. (15.15)

где – диаметр цилиндрического сосуда установки.

Описание установки.

 

Установка состоит из высокого цилиндрического прозрачного сосуда 1 (рис.15.3), по высоте которого на стенке нанесены на определенном расстоянии друг от друга метки 2. В сосуд налита исследуемая жидкость 3 с известной плотностью. Для определения ее вязкости в верхней части сосуда вблизи центра в жидкость опускают маленькие шарики 4, плотность которых несколько больше плотности жидкости.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: