Явление дифракции электромагнитных волн. Принцип Гюйгенса-Френеля. Зоны Френеля. Дифракция Френеля на круглом отверстии

Дифракция электромагнитных волн - огибание волной края препятствия, наблюдаемое при малых по сравнению с длиной волны размерах препятствий.

 

Дифракция - процесс искривления световых лучей, при прохождении их у края непрозрачных тел или сквозь небольшие отверстия, нарушающий законы геометрической оптики. Именно дифракция не позволяет различать сколь угодно малые детали предметов (накладывает ограничения на увеличение изображений в оптических приборах).

Явление дифракции объясняется с помощью принципа Гюйгенса (см. § 170), согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени.

 

Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис. 256). Согласно Гюйгенсу, каждая точка выделяемого отверстием участка волнового фронта служит источником вторичных волн (в однородной изотропной среде они сферические). Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т. е. волна огибает края отверстия.

 

Зоны Френеля

участки, на которые можно разбить поверхность световой (или звуковой) волны для вычисления результатов дифракции света (См. Дифракция света) (или звука). Впервые этот метод применил О. Френель в 1815—19. Суть метода такова. Пусть от светящейся точки Q (рис.) распространяется сферическая волна и требуется определить характеристики волнового процесса, вызванного ею в точке Р. Разделим поверхность волны S на кольцевые зоны; для этого проведём из точки Р сферы радиусами PO, Pa = PO + λ/2; Pb = Pa + λ/2, Pc = Pb + λ/2, (О — точка пересечения поверхности волны с линией PQ; λ — длина световой волны). Кольцеобразные участки поверхности волны, «вырезаемые» из неё этими сферами, и называется З. Ф. Волновой процесс в точке Р можно рассматривать как результат сложения колебаний, вызываемых в этой точке каждой З. Ф. в отдельности. Амплитуда таких колебаний медленно убывает с возрастанием номера зоны (отсчитываемого от точки О), а фазы колебаний, вызываемых в Р смежными зонами, противоположны. Поэтому волны, приходящие в Р от двух смежных зон, гасят друг друга, а действие зон, следующих через одну, складывается. Если волна распространяется, не встречая препятствий, то, как показывает расчёт, её действие (сумма воздействий всех З. Ф.) эквивалентно действию половины первой зоны. Если же при помощи экрана с прозрачными концентрическими участками выделить части волны, соответствующие, например, N нечётным зонам Френеля, то действие всех выделенных зон сложится и амплитуда колебаний Uнечёт в точке Р возрастёт в 2N раз, а интенсивность света в 4N2 раз, причём освещённость в точках, окружающих Р, уменьшится. То же получится при выделении только чётных зон, но фаза суммарной волны Uчёт будет иметь противоположный знак.

Такие зонные экраны (т. н. линзы Френеля) находят применение не только в оптике, но и в акустике и радиотехнике — в области достаточно малых длин волн, когда размеры линз получаются не слишком большими (сантиметровые радиоволны, ультразвуковые волны).

Метод З. Ф. позволяет быстро и наглядно составлять качественное, а иногда и довольно точное количественное представление о результате дифракции волн при различных сложных условиях их распространения. Он применяется поэтому не только в оптике, но и при изучении распространения радио- и звуковых волн для определения эффективной трассы «луча», идущего от передатчика к приёмнику; для выяснения того, будут ли при данных условиях играть роль дифракционные явления; для ориентировки в вопросах о направленности излучения, фокусировке волн и т.п.

 

Дифракция Френеля на круглом отверстии

 

Действие отверстия в точке наблюдения, находящейся на оси картины, зависит от того, сколько зон Френеля укладывается в отверстии. Если число зон нечетное – действие больше, чем без экрана. Больше всего – если открыта одна зона. Если открыта только первая зона, то, как видно из рисунка, амплитуда примерно в два раза больше, чем если бы был открыт весь фронт, а интенсивность – в четыре раза больше. Если открыто четное число зон – меньше, чем без экрана. Меньше всего – если открыты 2 зоны. Это все хорошо видно из графического рассмотрения (рис.4). Амплитуда определяется как длина вектора ON с началом в точке О, а конец – там, где кончается последняя открытая зона. Вокруг центральной точки будут темные и светлые кольца – это ясно из осевой симметрии картинки.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: