Нахождение азота в природе

В большой части азот находится в природе в свободном состоянии. Свободный азот является главной составной частью воздуха, который содержит 78, 2 % (об.) азота. Над одним квадратным километром земной поверхности в воздухе находиться 8 млн. т азота. Общее содержание его в земной коре оценивается величиной порядка 0.03 мол. доли, %. Азот входит в состав сложных органических соединений- белков, которые входят в состав всех живых организмов. В результате отмирания последних и тления их останков образуются более простые азотные соединения, которые при благоприятных условиях, (главным образом - отсутствие влаги) могут накапливаться.

 

Применение.

Большинство использований этого газа объясняется его инертными свойствами. Однако при высоких давлениях и температурах азот реагирует с некоторыми активными металлами, например с литием и магнием, образуя нитриды, а также с некоторыми газами, такими как кислород и водород.

Химическая и нефтехимическая промышленность

Азот используется для создания инертной среды, чтобы избежать взаимодействия химических веществ с кислородом, для обеспечения безопасности технологического процесса. Азот находит применение при транспортировке химических продуктов, а также при производстве аммиака. Возможными применениями азота также являются продувка технологических емкостей и трубопроводов, просушивание, регенерация катализатора.

Нефтегазовая промышленность

Азот применяется при добыче нефти и газа для поддержания внутрипластового давления и увеличения добычи продукта. Этот инертный газ широко используется для создания инертной подушки с целью обеспечения взрыво- и пожаробезопасности в технологических резервуарах, а также во время загрузочно-разгрузочный работ.

Азот находит применение для поддержания определенного давления в резервуарах с нефтью и газом, для очистки технологических емкостей на газовозах и сооружениях для хранения СПГ и СЖГ, для продувки трубопроводов.

Металлургическая промышленность

Азот применяется для защиты черных и цветных металлов во время отжига. Он находит применения в процессах нейтральной закалки, отжига со снятием напряжений, цементации, цианирования, пайки твердым припоем, спекания порошковым металлом, охлаждения экструзионной матрицы.

Фармацевтическая промышленность

Азот используется для защиты резервуаров, для хранения сырья и продукта, для транспортировки химических продуктов и упаковки лекарственных препаратов.

Электронная промышленность

Предотвращение окисления при производстве полупроводников и электрических цепей, продувка и очистка — основные применения азота в электронной промышленности.

БИЛЕТ №41

Аммиак, соли аммония. Получение. Физические, химические свойства. Применение.

 

Аммиак — NH3, нитрид водорода, при нормальных условиях — бесцветный газ с резким характерным запахом (запах нашатырного спирта).

Плотность аммиака почти вдвое меньше, чем у воздуха, 20 мг/м3 — IV класс опасности (малоопасные вещества) по ГОСТ 12.1.007. Растворимость NH3 в воде чрезвычайно велика — около 1200 объёмов (при 0 °C) или 700 объёмов (при 20 °C) в объёме воды. 7 — тип хладагента (неорганическое соединение), 17 — молекулярная масса.

 

Молекула аммиака имеет форму тригональной пирамиды с атомом азота в вершине. Три неспаренных p-электрона атома азота участвуют в образовании полярных ковалентных связей с 1s-электронами трёх атомов водорода (связи N−H), четвёртая пара внешних электронов является неподелённой, она может образовать ковалентную связь по донорно-акцепторному механизму с ионом водорода, образуя ион аммония NH4+. Благодаря тому, что не связывающее двухэлектронное облако строго ориентировано в пространстве, молекула аммиака обладает высокой полярностью, что приводит к его хорошей растворимости в воде.

В жидком аммиаке молекулы связаны между собой водородными связями. Сравнение физических свойств жидкого аммиака с водой показывает, что аммиак имеет более низкие температуры кипения (tкип −33,35 °C) и плавления (tпл−77,70 °C), а также более низкую плотность, вязкость (вязкость жидкого аммиака в 7 раз меньше вязкости воды), проводимость и диэлектрическую проницаемость. Это в некоторой степени объясняется тем, что прочность этих связей в жидком аммиаке существенно ниже, чем у воды, а также тем, что в молекуле аммиака имеется лишь одна пара неподелённых электронов, в отличие от двух пар в молекуле воды, что не дает возможность образовывать разветвлённую сеть водородных связей между несколькими молекулами. Аммиак легко переходит в бесцветную жидкость с плотностью 681,4 кг/м³, сильно преломляющую свет. Подобно воде, жидкий аммиак сильно ассоциирован, главным образом за счёт образования водородных связей. Жидкий аммиак практически не проводит электрический ток. Жидкий аммиак — хороший растворитель для очень большого числа органических, а также для многих неорганических соединений. Твёрдый аммиак — бесцветные кубические кристаллы.

Со́ли аммо́ния — соли, содержащие аммоний, NH4+; по строению, цвету и другим свойствам они похожи на соответствующие соли натрия. Все соли аммония хорошо растворимы в воде и полностью диссоциируют в водном растворе. Соли аммония проявляют общие свойства солей. При действии на них щёлочи выделяется газообразный аммиак. Все соли аммония при нагревании разлагаются. Получают их при взаимодействии аммиака или гидроксида аммония с кислотами

 

 

Физические свойства.

Аммиак (NH3) представляет собой бесцветный газ, который легче воздуха. Аммиак обладает резко выраженным запахом нашатырного спирта. Этот газ очень ядовит и вреден для человека. Аммиак может находиться в сжиженном, жидком и твердом состоянии. Жидкий аммиак требует очень тщательного хранения в специальных емкостях, так как является сильнейшим растворителем веществ. В твердом состоянии аммиак выглядит как бесцветные кристаллы в виде кубиков.

Химические свойства

· Благодаря наличию неподеленной электронной пары во многих реакциях аммиак выступает как основание Бренстеда или комплексообразователь (не следует путать понятия «нуклеофил» и «основание Бренстеда». Нуклеофильность определяется сродством к положительно заряженной частице. Основание имеет сродство к протону. Понятие «основание» является частным случаем понятия «нуклеофил»). Так, он присоединяет протон, образуя ион аммония:

· Водный раствор аммиака («нашатырный спирт») имеет слабощелочную реакцию из-за протекания процесса:

Ko=1,8·10−5

· Взаимодействуя с кислотами даёт соответствующие соли аммония:

· Аммиак также является очень слабой кислотой (в 10 000 000 000 раз более слабой, чем вода), способен образовывать с металлами соли — амиды. Соединения, содержащие ионы NH2, называются амидами, а N3− — нитридами. Амиды щелочных металлов получают, действуя на них аммиаком:

Амиды, имиды и нитриды ряда металлов образуются в результате некоторых реакций в среде жидкого аммиака. Нитриды можно получить нагреванием металлов в атмосфере азота.

Амиды металлов являются аналогами гидроксидов. Эта аналогия усиливается тем, что ионы ОН и NH2, а также молекулы Н2O и NH3 изоэлектронны.Амиды являются более сильными основаниями, чем гидроксиды, а следовательно, подвергаются в водных растворах необратимому гидролизу:

и в спиртах:

Подобно водным растворам щелочей, аммиачные растворы амидов хорошо проводят электрический ток, что обусловлено диссоциацией:

Фенолфталеин в этих растворах окрашивается в малиновый цвет, при добавлении кислот происходит их нейтрализация. Растворимость амидов изменяется в такой же последовательности, что и растворимость гидроксидов: LiNH2 — нерастворим, NaNH2 — малорастворим, KNH2, RbNH2 и CsNH2 — хорошо растворимы.

При нагревании аммиак разлагается, проявляет восстановительные свойства. Так, он горит в атмосфере кислорода, образуя воду и азот. Окисление аммиака воздухом на платиновом катализаторе даёт оксиды азота, что используется в промышленности для получения азотной кислоты

 

 

Получение

Промышленный способ получения аммиака основан на прямом взаимодействии водорода и азота:

N2(г) + 3H2(г) ↔ 2NH3(г) + 45,9 кДж

Это так называемый процесс Габера (немецкий физик, разработал физико-химический основы метода).

Реакция происходит с выделением тепла и понижением объёма. Следовательно, исходя из принципа Ле-Шателье, реакцию следует проводить при возможно низких температурах и при высоких давлениях — тогда равновесие будет смещено вправо. Однако скорость реакции при низких температурах ничтожно мала, а при высоких увеличивается скорость обратной реакции. Проведение реакции при очень высоких давлениях требует создания специального, выдерживающего высокое давление оборудования, а значит и больших капиталовложений. Кроме того, равновесие реакции даже при 700 °C устанавливается слишком медленно для практического её использования.

Применение катализатора (пористое железо с примесями Al2O3 и K2O) позволило ускорить достижение равновесного состояния. Интересно, что при поиске катализатора на эту роль пробовали более 20 тысяч различных веществ.

Учитывая все вышеприведённые факторы, процесс получения аммиака проводят при следующих условиях: температура 500 °C, давление 350 атмосфер, катализатор. Выход аммиака при таких условиях составляет около 30 %. В промышленных условиях использован принцип циркуляции — аммиак удаляют охлаждением, а непрореагировавшие азот и водород возвращают в колонну синтеза. Это оказывается более экономичным, чем достижение более высокого выхода реакции за счёт повышения давления.

Для получения аммиака в лаборатории используют действие сильных щелочей на соли аммония:

NH4Cl + NaOH = NH3↑ + NaCl + H2O.

Для осушения аммиака его пропускают через смесь извести с едким натром.

Очень сухой аммиак можно получить, растворяя в нём металлический натрий и впоследствии перегоняя. Это лучше делать в системе, изготовленной из металла под вакуумом. Система должна выдерживать высокое давление (при комнатной температуре пары аммиака оказывают давление около 10 атмосфер)

 

Применение.

Аммиак широко применяется в различных охлаждающих установках. Так же аммиак является отличным элементом при производстве удобрений, азотной кислоты и соды, взрывчатых веществ, продуктов химической промышленности. 10-процентный раствор аммиака называется нашатырным спиртом и используется в медицинских целях.

 

БИЛЕТ №42

Азотная кислота. Получение. Физические, химические свойства. Применение. Соли азотной кислоты. Азотные удобрения.

Азотная кислота (HNO3), — сильная одноосновная кислота. Твёрдая азотная кислота образует две кристаллические модификации смоноклинной и ромбической решётками.
Методы получения азотной кислоты

Первый завод по производству HNO3 из аммиака коксохимического производства был пущен в России в 1916 г. В 1928 г. было освоено производство азотной кислоты из синтетического аммиака.

Различают производство слабой (разбавленной) азотной кислоты и производство концентрированной азотной кислоты.

Процесс производства разбавленной азотной кислоты складывается из трех стадий:

1) конверсии аммиака с целью получения оксида азота

4NH3 + 5О2 → 4NO + 6Н2О

2) окисления оксида азота до диоксида азота

2NO + О2 → 2NO2

3) абсорбции оксидов азота водой

4NO2 + О2 + 2Н2О → 4HNO3

Суммарная реакция образования азотной кислоты выражается

NH3 + 2О2 → HNO3 + Н2О

 

Азотная кислота — бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C с частичным разложением.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: