Водородная связь, межмолекулярная и внутримолекулярная. Особое положение и значение водородной связи

Водородная связь, межмолекулярная и внутримолекулярная:

Водородная связь (В. с.) — форма ассоциации между электроотрицательным атомом и атомом водорода H, связаннымковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, Oили F. Водородные связи могут быть межмолекулярными или внутримолекулярными.

Связь этого типа, хотя и слабее ионной и ковалентной связей, тем не менее играет очень важную роль во внутри- и межмолекулярных взаимодействиях. Водородные связи во многом обусловливают физические свойства воды и многих органических жидкостей (спирты, карбоновые кислоты, амиды карбоновых кислот, сложные эфиры).

Наиболее распространены межмолекулярные В. с. Они приводят к ассоциации одинаковых или разнородных молекул в разнообразные агрегаты-комплексы с В. с., или Н-комплексы, которые при обычных условиях находятся в быстро устанавливающемся равновесии. При этом возникают как бинарные комплексы (кислота — основание и циклические димеры), так и большие образования (цепи, кольца, спирали, плоские и пространственные сетки связанных молекул). Наличием таких В. с. обусловлены свойства различных растворов и жидкостей (в первую очередь, воды и водных растворов, ряда технических полимеров — капрона, нейлона и т.д.), а также кристаллическая структура многих молекулярных кристаллов и кристаллогидратов неорганических соединений, в том числе, разумеется, и льда. Точно так же В. с. существенно определяет структуру белков, нуклеиновых кислот и других биологически важных соединений и поэтому играет важнейшую роль в химии всех жизненных процессов. Вследствие всеобщей распространённости В. с. её роль существенна и во многих других областях химии и технологии (процессы перегонки, экстракции, адсорбции, хроматографии, кислотно-основные равновесия, катализ и т.д.).

Если водородная связь объединяет части одной молекулы, то говорят о внутримолекулярной водородной связи. Это особенно характерно для многих органических соединений.

 

Особое положение и значение водородной связи:

Водородная связь в значительной мере определяет свойства и таких биологически важных веществ, как белки и нуклеиновые кислоты. В частности, элементы вторичной структуры (например, α-спирали, β-складки) и третичной структуры в молекулахбелков, РНК и ДНК стабилизированы водородными связями. В этих макромолекулах, водородные связи сцепляют части той же самой макромолекулы, заставляя её сворачиваться в определенную форму. Например, двойная спиральная структура ДНК, определяется в значительной степени наличием водородных связей, сцепляющих пары нуклеотидов, которые связывают одну комплементарную нить с другой.

Много полимеров усилены водородными связями в их главных цепях. Среди синтетических полимеров самый известный пример — нейлон, где водородные связи играют главную роль в кристаллизации материала. Водородные связи также важны в структуре полученных искусственно полимеров (например, целлюлозы) и в многих различных формах в природе, таких как древесина, хлопок и лён.

Водородные связи относительно слабы и неустойчивы: предполагается, что они могут легко возникать и исчезать в результате тепловых флуктуаций. Это, в частности, приводит к тому, что вода должна рассматриваться не как «простая», а как «связанная жидкость»: вода представляется как сеть молекул , соединённых водородными связями.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: