Химические синапсы. Особенности проведения возбуждения через химические синапсы. Медиаторы

Синапсы. Классификация. Строение.

Синапс – это специализированное структурное соединение между клетками, обеспечивающее взаимное влияние между ними. Через синапсы передаются возбуждающие и тормозные влияния между двумя возбудимыми клетками, осуществляется трофическое влияние, синапсы играют важную роль в реализации механизмов памяти.

Все синапсы классифицируются по следующим критериям:

1. По виду соединяемых клеток:

1. межнейронные – локализуются в ЦНС и вегетативных ганглиях;

2. нейроэффекторные – соединяют эфферентные нейроны соматической и вегетативной нервной системы с исполнительными клетками;

3. нейрорецепторные – осуществляют контакты во вторичных рецепторах между рецепторной клеткой и дендритом афферентного нейрона.

2. По эффекту: возбуждающие и тормозящие.

3. В зависимости от местоположения в ЦНС: аксосоматические, аксодендритные, аксоаксональные, дендросоматические и дедродендритные.

4. По способу передачи сигналов:

1. Химические – наиболее распространенные в ЦНС, в которых посредником (медиатором) передачи является химическое вещество. Химические синапсы по природе медиатора делят на холинэргические (медиатор – ацетилхолин), адренэргические(норадреналин), дофаминэргические (дофамин), ГАМК-эргические (γ-аминомасляная кислота) и т.д.

2. Электрические, в которых сигналы передаются электрическим током;

3. Смешанные синапсы – электрохимические.

Механизм синаптической передачи сигналов.

Химические синапсы – это преобладающий тип синапсов в мозгу млекопитающих и человека. В химическом синапсе выделяют пресинаптическое окончание, синаптическую щель и постсинаптическую мембрану.

В пресинаптическом окончании находятся синаптические пузырьки – везикулы – диаметром до 200 нм, которые образуются либо в теле нейрона и с помощью аксонного транспорта доставляются в пресинаптическое окончание, либо синтезируются (или ресинтезируются) в самом пресинаптическом окончании. Везикулы содержат медиаторы, необходимые для передачи влияния одной клетки на другую. Для синтеза медиатора нужны ферменты, которые образуются в теле клетки на рибосомах и доставляются в пресинаптическое окончание аксонным транспортом. Кроме везикул с медиатором в пресинаптическом окончании имеются митохондрии, которые обеспечивают энергией процесс синаптической передачи. Эндоплазматическая сеть окончания содержит депонированныйСа+. Микротрубочки и микрофиламенты участвуют в передвижении везикул. Пресинаптическое окончание имеет пресинаптическую мембрану. Пресинаптической мембраной называют часть пресинаптического окончания, которая ограничивает синаптическую щель.

Синаптическая щель имеет ширину 20-50 нм. В ней содержится межклеточная жидкость и вещество мукополисахаридной природы в виде тяжей междупре- и постсинаптической мембранами. В синаптической щели также находятся ферменты, которые могут разрушать медиатор.

Постсинаптическая мембрана – утолщенная часть клеточной мембраны иннервируемой клетки, содержащая белковые рецепторы, имеющие ионные каналы и способные связывать молекулы медиатора. Постсинаптическую мембрану нервно-мышечного синапса называют также концевой пластинкой.

Химические синапсы. Особенности проведения возбуждения через химические синапсы. Медиаторы.

Химические – наиболее распространенные в ЦНС, в которых посредником (медиатором) передачи является химическое вещество. Химические синапсы по природе медиатора делят на холинэргические (медиатор – ацетилхолин), адренэргические(норадреналин), дофаминэргические (дофамин), ГАМК-эргические (γ-аминомасляная кислота) и т.д.

Химические синапсы – это преобладающий тип синапсов в мозгу млекопитающих и человека. В химическом синапсе выделяют пресинаптическое окончание, синаптическую щель и постсинаптическую мембрану.

В пресинаптическом окончании находятся синаптические пузырьки – везикулы – диаметром до 200 нм, которые образуются либо в теле нейрона и с помощью аксонного транспорта доставляются в пресинаптическое окончание, либо синтезируются (или ресинтезируются) в самом пресинаптическом окончании. Везикулы содержат медиаторы, необходимые для передачи влияния одной клетки на другую. Для синтеза медиатора нужны ферменты, которые образуются в теле клетки на рибосомах и доставляются в пресинаптическое окончание аксонным транспортом. Кроме везикул с медиатором в пресинаптическом окончании имеются митохондрии, которые обеспечивают энергией процесс синаптической передачи. Эндоплазматическая сеть окончания содержит депонированныйСа+. Микротрубочки и микрофиламенты участвуют в передвижении везикул. Пресинаптическое окончание имеет пресинаптическую мембрану. Пресинаптической мембраной называют часть пресинаптического окончания, которая ограничивает синаптическую щель.

Синаптическая щель имеет ширину 20-50 нм. В ней содержится межклеточная жидкость и вещество мукополисахаридной природы в виде тяжей междупре- и постсинаптической мембранами. В синаптической щели также находятся ферменты, которые могут разрушать медиатор.

Постсинаптическая мембрана – утолщенная часть клеточной мембраны иннервируемой клетки, содержащая белковые рецепторы, имеющие ионные каналы и способные связывать молекулы медиатора. Постсинаптическую мембрану нервно-мышечного синапса называют также концевой пластинкой.

В процессе передачи сигнала в химическом синапсе можно выделить следующие этапы (см. схему):

1. Потенциал действия поступает в пресинаптическое окончание.

2. После поступления ПД к пресинаптическому окончанию происходит деполяризация мембраны окончания, активируются потенциал-зависимые кальциевые каналы и в синаптическуютерминаль входит Са+.

3. Повышение концентрации ионов Са+ активирует транспортную систему, что инициирует их экзоцитоз.

4. Содержимое везикул выделяется в синаптическую щель.

5. Молекулы медиатора, диффундируются в синаптической щели, связываются с рецепторами постсинаптической мембраны.

6. Рецепторы постсинаптической мембраны активируют ионные каналы.

7. В результате под действием медиатора происходит активация ионных каналов и переход по этим каналам ионов К+ и Nа+ по их градиентам концентрации. Движение ионов формирует постсинаптический потенциал, который по своим свойствам является локальным ответом.

8. Медиатор, находящийся в контакте с рецепторами постсинаптической мембраны и в синаптической щели, разрушается ферментами.

9. Продукты разрушения медиатора и не разрушенный медиатор всасываются преимущественно в пресинаптическое окончание, где осуществляется ресинтез медиатора и помещение его в везикулы.

На все эти процессы требуется определенное время, которое получило название синаптической задержки и составляет 0,2-0,5 мс. Синаптическая задержка пропорционально зависит от температуры.

Выделение молекул медиатора из пресинаптического окончания пропорционально количеству поступившего туда Са+ в степени n = 4. Следовательно, химическое звено пресинаптического окончания работает как усилитель электрических сигналов.

Химическая передача осуществляет как возбуждающее, так и тормозное действие на постсинаптическую мембрану и зависит от медиатора и рецепторов постсинаптической мембраны. Из пресинаптического окончания выделяются следующие медиаторы:

1. Ацетилхолин – встречается в различных отделах ЦНС (кора большого мозга, ретикулярная формация ствола мозга, гипоталамус, спинной мозг). Известен в основном как возбуждающий медиатор (например, он является медиатором ά-мотонейронов спинного мозга). Тормозное влияние ацетилхолин оказывает в глубоких слоях коры большого мозга, стволе мозга и в хвостатом ядре.

2. Катехоламины (норадреналин, дофамин, серотонин, гистамин) в основном содержатся в нейронах ствола мозга, в меньших количествах в других отделах ЦНС. Например, амины обеспечивают возникновение процессов возбуждения и торможения в промежуточном мозге, черной субстанции, лимбической системе, полосатом теле.

1. Норадреналин. Норадренэргические нейроны сконцентрированы в основном в области голубого пятна (средний мозг). Норадреналин является тормозным медиатором клеток Пуркинье мозжечка и возбуждающим – в гипоталамусе, ядрах эпиталамуса. В ретикулярной формации ствола мозга и в гипоталамусе обнаружены ά – и β – адренорецепторы. Норадреналин регулирует настроение, эмоциональные реакции, обеспечивает поддержание бодрствования, участвует в механизмах формирования некоторых фаз сна, сновидений.

2. Дофамин. Дофаминэргические нейроны имеются в составе полосатого тела, в гипофизе. Дофамин участвует в формировании чувства удовольствия, регуляции эмоциональных реакций, поддержании бодрствования. Дофамин полосатого тела регулирует сложные мышечные движения.

3. Серотонин. Серотонин содержится главным образом в структурах, имеющих отношение к регуляции вегетативных функций. С помощью серотонина в нейронах ствола мозга передаются возбуждающие и тормозящие влияния, в коре – тормозящие. Серотонин ускоряет процессы обучения, формирование болевых ощущений, сенсорное восприятие, засыпание.

4. Гистамин в довольно высокой концентрации обнаруживается в гипофизе и срединном возвышении гипоталамуса. В остальных отделах содержание гистамина очень низко.

1. Аминокислоты. Кислые аминокислоты (глицин, γ – аминомасляная кислота – ГАМК) являются тормозными медиаторами в синапсах ЦНС. Глицин работает в спинном мозге, ГАМК – в коре больших полушарий, мозжечке, стволе мозга, спинном мозге. Нейтральные аминокислоты (ά – глутамат, ά – аспартат) передают возбуждение: глутаминовая кислота является основным возбуждающим медиатором. Рецепторы глутамата и аспарагиновой кислоты имеются на клетках спинного мозга, мозжечка, таламуса, гиппокампа, коры большого мозга.

2. Полипептиды. К ним относят энкефалины, эндорфины, ангиотензин, люлиберин, олигопептиды, субстанцию Р и пептид, вызывающий δ-сон.

1. Энкефалины и эндорфины – медиаторы нейронов, блокирующих болевуюимпульсацию. Они реализуют свое влияние посредством опиатных рецепторов, которые особенно плотно располагаются на клетках лимбической системы, черной субстанции, ядрах промежуточного мозга и голубого пятна спинного мозга. Энкефалины и эндорфины дают антиболевые реакции, повышение устойчивости к стрессу и сон.

2. Пептид, вызывающий δ-сон также дает антиболевые реакции, повышение устойчивости к стрессу и сон.

3. Ангиотензин участвует в передаче информации о потребности организма в воде, повышает артериальное давление, тормозит синтез катехоламинов, стимулирует секрецию гормонов, информирует ЦНС об осмотическом давлении крови.

4. Люлиберин участвует в передаче информации о потребности организма в половой активности.

5. Олигопептиды – медиаторы настроения, полового поведения, передачи ноцицептивного возбуждения от периферии в ЦНС, формирования болевых ощущений.

6. Субстанция Р – является медиатором нейронов, передающих болевую информацию. Особенно много этого полипептида содержится в дорсальных корешках спинного мозга.

Кроме выше перечисленных медиаторов, существуют химические вещества, циркулирующие в крови, которые оказывают модулирующее действие на активность синапсов. К ним относятся простагландины и нейрогормоны. Простагландины влияют на секрецию медиатора и работу аденилатциклаз. Гипоталамические гормоны, регулирующие функцию гипофиза, также выполняют медиаторную функцию.

Эффект действия медиатора зависит в основном от свойств ионных каналов постсинаптической мембраны и вторых посредников. Например, ацетилхолин в коре большого мозга может вызвать и возбуждение и торможение, в синапсах сердца – торможение, в синапсах гладкой мускулатуры желудочно-кишечного тракта – возбуждение. Катехоламины стимулируют сердечную деятельность, но тормозят сокращения желудка и кишечника.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: