ТЕМА 9. БЕТОН. ВИДЫ БЕТОНОВ.
Бетон – это искусственный каменный материал, получаемый из цемента, заполнителей и специальных добавок и воды. Бетон один из основных строительных материалов.
Из истории. При возведении массивных сооружений и таких конструкций, как своды, купола, триумфальные арки, ещё древние римляне использовали бетон и в качестве вяжущих материалов применяли глину, гипс, известь, асфальт. С падением Римской империи применение бетона прекратилось и возобновилось лишь в 18 веке в западноевропейских странах.
Развитие и совершенствование технологии бетона связано с производством цемента, который появился в России в начале XVIII в. По архивным свидетельствам на строительстве Ладожского канала в 1728-29 был использо-ван цемент, изготовленный на цементном заводе, существовавшем в Конорском уезде Петербургской губернии.
Широкое применение бетона в СССР было подготовлено трудами русских учёных Н. А. Белелюбского, А.Р. Шуляченко и И. Г. Малюги, разработавших совместно в 1881 первые нормы на портландцемент. В 1890 И. Самович опубликовал результаты испытаний прочности растворов с различным содержанием цемента и предложил составы бетонной смеси для получения бетона наибольшей плотности. Профессор И. Г. Малюга в 1895 установил качественную зависимость между прочностью бетона и процентным содержанием воды в массе цемента и заполнителей. В работе американского учёного Д. Абрамса, опубликованной в США в 1918, были даны подробные графические зависимости прочности бетона от водо-цементного отношения и подвижности бетонной смеси, от состава бетон, крупности заполнителей и водо-цементного отношения. Научные основы проектирования состава бетона с учётом его прочности и подвижности бетонной смеси были развиты советским учёным Н. М. Беляевым. Представления о зависимости прочности бетона от водо-цементного отношения радикально не изменялись в течение длительного времени.
Виды бетона
Легкий бетон
Для приготовления легких бетонов используют различные виды пористых заполнителей: искусственные - керамзит, аглопорит, перлит, шлаковую пемзу и естественные - туф, пемзу.
Легкие бетоны на пористых заполнителях применяют в ограждающих конструкциях и для снижения собственной массы несущих конструкций. Поэтому для этих бетонов наряду с прочностью очень важное значение имеет плотность бетона.
По плотности различают:
особо легкие теплоизоляционные бетоны с плотностью в высушенном состоянии менее 500 кг/м3
легкие бетоны с плотностью 500...1800 кг/м3.
Прочность особо легких бетонов редко бывает более 1,5 МПа, а прочность легкого бетона может изменяться в значительных пределах - от 2,5 до ЗО МПа и выше.
Обычно легкие бетоны подразделяются на:
конструктивно-теплоизоляционные с плотностью 500 -1400 кг/м3 и прочностью 2...10 МПа
конструктивные с плотностью 1400...1800 кг/м3 и прочностью 10...30 МПа.
По структуре различают:
плотные, или обычные, легкие бетоны, в которых раствор на тяжелом и легком песке полностью заполняет межзерновые пустоты крупного заполнителя, поризованные легкие бетоны, в которых не содержится и сохраняются межзерновые пустоты.
В строительстве используют главным образом легкие бетоны с крупностью пористого заполнителя до 20...40 мм, однако применяют и мелкозернистые легкие бетоны.
Легкие бетоны делятся на три вида:
Поризованный легкий бетон
Крупнопористый легкий бетон
Ячеистый бетон
.Поризованный легкий бетон
Для улучшения теплофизических свойств легкого бетона на пористом заполнителе применяют поризацию растворной части бетона или заменяют ее поризованным цементным камнем, т.е. готовят легкий бетон на крупном пористом заполнителе без песка. К поризованным легким бетонам относят бетоны, содержащие более 800 л/м3 легкого крупного заполнителя, у которых объем воздушных пор составляет 5...25%. Поризацию таких бетонов осуществляют либо предварительно приготовленной пеной, либо за счет введения газообразующих или воздухововлекающих добавок. Пеной поризуют только беспечаные смеси, воздухововлекающими добавками - только смеси с песком, газообразующими добавками - смеси с песком и без песка. В зависимости от используемого заполнителя и способа поризации бетоны получают название: керамзитопенобетон, керамзитогазобетон, керамзитобетон с воздухововлекающими добавками.
Прочность поризованного бетона может быть 5...10 МПа, а плотность - 700...1400 кг/м3. Прочность и плотность бетона зависят от его структуры. Для поризованного легкого бетона рационально применять цемент М400 и выше, керамзит марок: М50, 75, 100, 150, 200, 250. Оптимальный показатель OK = 5-6 см, оптимальный показатель Ж=30 - 90с. Расход керамзитового щебня или гравия не должен превышать 0,9 м3 на один куб бетона. Расход цемента в керамзитобетоне для неармированных конструкций
Крупнопористый легкий бетон
Крупнопористый конструктивно - теплоизоляционный бетон - это бетон на легких крупнопористых заполнителях (керамзитовый гравий, аглопорит, шлаковая пемза, природные крупнопористые и мелкопористые заполнители). Крупнопористые бетоны на легких заполнителях отличаются высокой жесткостью, поэтому при определении их состава контролируют нерасслаиваемость бетонной смеси.
.Ячеистый бетон
Ячеистый бетон - это особо легкий бетон с большим количеством (до 85% от общего объема бетона) мелких и средних воздушных ячеек размером до 1... 1,5 мм.
Пористость ячеистым бетонам придается:
механическим путем, когда тесто, состоящее из вяжущего и воды, часто с добавкой мелкого песка, смешивают с отдельно приготовленной пеной; при твердении получается пористый материал, называемый пенобетоном;
химическим путем, когда в вяжущее вводят специальные газообразующие добавки;
в результате в тесте вяжущего вещества происходит реакция газообразования, оно вспучивается и становится пористым. Затвердевший материал называют газобетоном.
Ячеистые бетоны по плотности и назначению делят на теплоизоляционные с плотностью З00...600 кг/м3 и прочностью 0,4... 1,2 МПа и конструктивные с плотностью 600...1200 кг/м3 (чаще всего около 800 кг/м3) и прочностью 2,5...15 МПа.
Широко развивается производство изделий из автоклавных ячеистых бетонов, т.е. твердеющих в автоклавах при пропаривании под давлением 0,8...1 МПа. Для автоклавного ячеистого бетона наиболее целесобразно использовать портландцемент совместно с известью - кипелкой в отношении 1:1 по массе.
Для приготовления автоклавных ячеистых бетонов применяют известь с содержанием активной оксида кальция не менее 70%, оксида магния не более 5%, высокоэкзотермическую с температурой гашения около 85 °C; тонкость помола должна быть не ниже 3500...4000 см2/г.
Для ячеистых бетонов неавтоклавного твердения применяют цементы не менее М400. В качестве кремнеземнистого компонента рекомендуется применять тонкомолотые кварцевые пески, содержащие не менее 90% кремнезема, не более 5% глины и 0,5% слюды. Песок в зависимости от плотности ячеистого бетона должен иметь удельную поверхность 1200...2000 см2/г.
Для образования ячеистой структуры бетона применяют пенообразователи и газообразователи. В качестве пенообразователей используют несколько видов ПАВ (клееканифольный, смолосапониновый, алюмосульфонатный)
В качестве газообразователя применяют алюминиевую пудру, которую выпускают четырех марок. Для производства газобетона используют пудру марки ПАК-3 или ПАК-4
Тяжелый бетон
В строительстве наиболее широко используют обычный тяжелый бетон плотностью 1600 -2500 кг/куб. м. на заполнителях из горных пород (граните, известняке, диабазе, щебне). Строительными нормами и правилами, установлены следующие марки тяжелых бетонов - М100, 150, 200,300, 400, 500, 600.
Существуют различные виды тяжелого бетона:
1) Бетон для сборных железобетонных конструкций
2) Высокопрочный бетон
Высокопрочный бетон прочностью 60... 100 МПа получают на основе цемента высоких марок, промытого песка и щебня прочностью не ниже 100 МПа. Высокопрочный бетон приготовляют с низким В/Ц = 0,3... 0,35 и ниже (смеси жесткие или малоподвижные) в бетоносмесителях принудительного действия. Для укладки смесей и формования изделий используют интенсивное уплотнение: вибрирование с пригрузом, двойное вибрирование.
Для приготовления высокопрочного бетона применяют различные способы повышения активности цемента и качества бетонной смеси (домол и виброактивация цемента, виброперемешивание, применение суперпластификаторов) и принимают высокий расход цемента. Большие перспективы в получении высокопрочных бетонов связаны с применением вяжущего низкой водопотребности (ВНВ), которое получают совместным помолом высокомарочного цемента и суперрластификатора С-3. При бетонировании массивных сооружений целесообразно применить цементы с пониженным содержанием алита (трех кальциевого силиката) и особенно целита (трех кальциевого алюмината), лучше всего белитовые (двух кальциевый силикат). Максимально допустимый расход белитового портландцемента составляет 450 кг/ куб.м. В качестве крупного заполнителя следует применять фракционированный щебень из плотных и прочных горных пород. Предел прочности при сжатии - у изверженных не менее ЮОМПа и у осадочных 80 Мпа. Песок для высокопрочных бетонов должен иметь пустотность менее 40%. Марки высокопрочных бетонов М 500 - 1000.
3) Быстротвердеющий бетон
Получение быстротвердеющего бетона, обладающего относительно высокой прочностью в раннем возрасте (1...3 сут.) при твердении в нормальных условиях, достигается применением быстротвердеющего цемента, а также различными способами ускорения твердения цемента (применение жесткой бетонной смеси с низким В/Ц, использование добавок-ускорителей твердения (хлористый кальций, хлористый водород, глиноземистый цемент), сухое или мокрое домалывание цемента с добавкой гипса (2...5% от массы цемента) или с применением комплексных специальных добавок, активация цементного раствора. Для получения качественного быстротвердеющего бетона используют алюминатный цемент марки М500, домолотого с 3% гипса, жесткой бетонной смеси с В/Ц = 0,35, добавки хлористого кальция в количестве 2% веса цемента и виброперемешивание. По результатам испытаний в первые сутки быстротвердеющий бетон набирает прочность при сжатии 300 - 500 кг/ кв.см.
4) Бетон на мелком песке
Ввиду широкого распространения в природе мелких песков и отсутствия в некоторых районах песков с удовлетворительным зерновым составом допускаются применять в бетоне мелкие и тонкие пески (с Мкр < 1,5) при условии соответствующего технико - экономического обоснования.
Мелкие пески по сравнению со средними и крупными характеризуются повышенной пустотностью и удельной поверхностью и худшим зерновым составом. Вследствие этого они несколько понижают прочность бетона и уменьшают подвижность бетонной смеси, что вызывает увеличение расхода цемента для получения равнопрочных и равноподвижных бетонов. Замена крупного песка мелким в большей степени сказывается на осадке конуса и меньшей - на удобоукладываемости бетонной смеси. Вместе с тем мелкий песок меньше раздвигает зерна крупного заполнителя и обладает лучшей водоудерживающей способностью, в результате чего уменьшается оптимальное содержание песка в бетоне и, следовательно, в меньшей мере заметно его влияние на водопотребность бетонной смеси.
5) Бетон для гидротехнических сооружений
Гидротехнический бетон - бетон, применяемый для строительства сооружений или их отдельных частей, постоянно находящихся в воде или периодически контактирующих с водной средой; разновидность тяжёлого бетона. Гидротехнический бетон характеризуется стойкостью против агрессивного воздействия воды, водонепроницаемостью, морозостойкостью, прочностью на сжатие и растяжение, ограниченным выделением тепла при твердении. Требования, предъявляемые к гидротехническому бетону, зависят от расположения и условий работы гидротехнических сооружений и их конструктивных элементов. Для приготовления гидротехнического бетона применяют портландцемент и его разновидности: заполнителями служат песок, щебень, гравий или галька крупностью до 150 мм и более. Качество гидротехнического бетона повышают введением в него различных добавок (воздухововлекающих, пластифицирующих, уплотняющих и др.).
6) Бетон для дорожных и аэродромных покрытий
В бетонных покрытиях дорог и аэродромов основными расчетными напряжениями являются напряжения от изгиба, так как покрытие работает на изгиб, как плита на упругом основании. Поэтому при расчете состава бетона надо установить такое соотношение между его составляющими, которое обеспечивает требуемую прочность бетона на растяжение при изгибе, а также достаточную прочность на сжатие и морозостойкосить. Проектную прочность дорожного бетона устанавливают в зависимости от назначения бетона: при изгибе - М 20, 25, 30, 35, 40, 45, 50, 55; при сжатии - М 100, 150, 200, 250, 300, 350, 400, 500.
Марки бетона по морозостойкости назначают в соответствии с климатическими условиями района строительства: F50, F100, F150, F200.
Требования к подвижности бетонной смеси: ОК = 1...3 см; Ж = 2...5с и Ж =10...15с, Чтобы обеспечить достаточную морозостойкость, и, следовательно, надежную защиту и эксплуатацию покрытий длительное время, В/Ц должно быть не более: для сурового климата - 0,5, умеренного - 0,53, мягкого - 0,55. Для оснований бетонных дорог допускается использовать портландцемент не ниже МЗОО, Для бетона однослойных и двухслойных покрытий не ниже М400 с содержанием трех кальциевого алюмината менее 10%. В качестве крупного заполнителя используют щебень из прочных пород - изверженных (прочностью не менее 120 МПа) и осадочных пород (прочностью не менее 80 МПа); гравий только после промывки, при этом содержание в них загрязняющих частиц, не должно превышать 1,5 - 2% по массе. Наибольший размер зерен щебня и гравия не менее 20мм, 40мм, 70мм. В качестве ПАВ используют - пластификаторы (ССБ) и воздухововлекающие (мылонафт и абиетат натрия); комплексные добавки - СДБ и мылонафт, СДБ и СНВ.
7) Бетон с тонкомолотыми добавками
Применение тонкомолотых добавок (наполнителей) рационально в двух случаях:
когда по условию прочности можно допустить большее В/Ц, чем требуется по условию долговечности бетона.
когда прочность бетона можно обеспечить при меньшем расходе цемента, чем требуется по условию плотности.
8) Малощебеночный бетон
Малощебеночным называют бетон с пониженным содержанием щебня или гравия. При уменьшении содержания щебня в обычном бетоне повышается водопотребность бетонной смеси (так как возрастает удельная поверхность заполнителя), увеличивается воздухововлечение в бетонную смесь и вследствие этого несколько уменьшаются прочность бетона и модуль деформации, возрастают усадка и ползучесть. Соответственно при введении щебня в цементно -песчаный бетон и увеличении его содержания свойства бетона изменяются в противоположном направлении. Меняя содержание щебня в бетоне, можно регулировать его свойства.
Малощебеночный бетон используют главным образом тогда, когда для железобетонных конструкций приходится применять дорогостоящий привозной щебень. Оптимальная плотность малощебеночного бетона составляет - 2380 кг/куб, м.
9 )Литой бетон
Литой бетон готовят при высоком расходе воды, что требует уделять особое внимание Предупреждению расслаивания бетонной смеси. Для ее предотвращения осуществляют мероприятия, способствующие повышению водоудерживающей способности смеси:
используют цементы, обладающие достаточной водоудерживающей способностью;
применяют суперпластификаторы, воздухововлекающие или водоудерживающие добавки;
ограничивают значения В/Ц, чтобы избежать расслоения цементного теста;
увеличивают содержание песка в бетонной смеси, повышая значения коэффициента раздвижки а.
Для приготовления литых бетонов желательно использовать портландцемент и быстротвердеющий цемент. Такие цементы вследствие оптимального гранулометрического состава зерен и высокой точности помола обладают хорошей водоудерживающей способностью при высоких В/Ц. Кроме того быстрое схватывание цементного теста уменьшает возможность его расслаивания, так как Последнее может происходить только до момента затвердевания бетона. В строительстве используют литые бетоны с прочностью R = 20...60 МПа.
3.Особо тяжелый бетон
Особо тяжелые бетоны применяют в специальных сооружениях для защиты от радиоактивных воздействий. К особо тяжелым относят бетоны с плотностью более 2500 кг/ куб. м.
Для особо тяжелых бетонов применяют портландцемент, пуццолановый портландцемент, шлакопортландцемент, глиноземистый цемент, гипсоглино-земистый расширяющийся цемент. В качестве заполнителей в особо тяжелых бетонах используют материалы с высокой плотностью: магнетит, гематит, барит, металлический скрап.
К заполнителям особо тяжелых бетонов предъявляют следующие дополнительные требования:
минимальная прочность на сжатие чугунного скрапа - 200МПа, магнетита - 200 МПа, лимонита или гематита - 35 МПа, барита -40 МПа (испытания в цилиндрических образцах диаметром 50 мм, высотой 50 мм);
содержание полуторных окислов в барите - не более 1% массы заполнителей,
водопоглощение (% по массе) магнетита и барита 1-2, лимонита и гематита 9-10
должен быть не менее 120 кг/м3, для армированных не менее 200 кг/м3.
Свойства бетона и бетонной смеси
Бетонной смесью называют рационально составленную и тщательно перемешанную смесь компонентов бетона до начала процессов схватывания и твердения.
Состав бетонной смеси определяют, исходя из требований к самой смеси и к бетону.
Основной структурообразующей составляющей в бетонной смеси является цементное тесто.
Независимо от вида бетона бетонная смесь должна удовлетворять двум главным требованиям: обладать хорошей удобоукладываемостью, соответствующей применяемому способу уплотнения и сохранять при транспортировании и укладке однородность, достигнутую при приготовлении.
При действии возрастающего усилия бетонная смесь вначале претерпевает упругие деформации, когда же преодолена структурная прочность, она течет подобно вязкой жидкости. Поэтому бетонную смесь называют упруго-пластично-вязким телом, обладающим свойствами твердого тела и истинной жидкости.
Свойство бетонной смеси разжижаться при механических воздействиях и вновь загустевать в спокойном состоянии называется тиксотропией
Технические свойства бетонной смеси
При изготовлении железобетонных изделий и бетонировании монолитных конструкций самым важным свойством бетонной смеси является удобоукладываемость (или удобоформуемость), т.е. способность заполнять форму при данном способе уплотнения, сохраняя свою однородность.
Для оценки удобоукладываемости используют три показателя:
подвижность бетонной смеси (П), являющуюся характеристикой структурной прочности смеси;
жесткость (Ж), являющуюся показателем динамической вязкости бетонной смеси;
связность, характеризуемую водоотделением бетонной смеси после ее отстаивания.
Подвижность бетонной смеси характеризуется измеряемой осадкой (см) конуса (ОК), отформованного из бетонной смеси, подлежащей испытанию. Подвижность бетонной смеси вычисляют как среднее двух определений, выполненных из одной пробы смеси. Если осадка конуса равна нулю, то удобоукладываемость бетонной смеси характеризуется жесткостью.
Жесткость бетонной смеси характеризуется временем (с) вибрирования, необходимым для выравнивания и уплотнения предварительно отформованного конуса бетонной смеси в приборе для определения жесткости.
Связность бетонной смеси обуславливает однородность строения и свойств бетона. Очень важно сохранить однородность бетонной смеси при перевозке, укладке в форму и уплотнении. При уплотнении подвижных бетонных смесей происходит сближение составляющих ее зерен, при этом часть воды отжимается вверх. Уменьшение количества воды затворения при применении пластифицирующих добавок и повышение водоудерживающей способности бетонной смеси путем правильного подбора зернового состава заполнителей являются главными мерами борьбы с расслоением подвижных бетонных смесей.
Удобоукладываемость бетонной смеси
Количество воды затворения является основным фактором, определяющим удобоукладываемость бетонной смеси. Вода затворения (В, кг/м3) распределяется между цементным тестом (Вц) и заполнителем (Взап):
В= Вц + Взап.
Количество воды в цементном тесте определяют его реологические свойства: предельное напряжение сдвига и вязкость, а следовательно, и технические свойства бетонной смеси - подвижность и жесткость.
Водопотребность заполнителя Взап является его важной технологической характеристикой; она возрастает с увеличением суммарной поверхности зерен заполнителя и поэтому велика у мелких песков.
Для обеспечения требуемой прочности бетона величина водоцементного отношения должна сохраняться постоянной, поэтому возрастание водопотребности вызывает перерасход цемента. При мелких песках он достигает 15-25%, поэтому мелкие пески следует применять после обогащения крупным природным или дробленым песком и с пластифицирующими добавками, снижающими водопотребность.
Деформативные свойства бетона
Под нагрузкой бетон ведет себя иначе, чем сталь и другие упругиe материалы. Конгломератная структура бетона определяет его поведение при возрастающей нагрузке осевого сжатия.
Область условно упругой работы бетона - от начала нагружения до напряжения сжатия, при котором по поверхности сцепления цементного камня с заполнителем образуются микротрещины.
Опыты подтвердили, что при небольших напряжениях и кратковременном нагружения для бетона характерна упругая деформация, подобная деформации пружины.
Модуль упругости бетона возрастает при увеличении прочности и зависит от пористости: увеличение пористости бетона сопровождается снижением модуля упругости.
При одинаковой марке по прочности модуль упругости легкого бетона на пористом заполнителе меньше в 1,7-2,5 раза тяжелого. Еще ниже модуль упругости ячеистого бетона. Таким образом, упругими свойствами бетона можно управлять, регулируя его структуру. Модуль упругости бетона при сжатии и растяжении принимают равными между собой:
Есж = Ер = Еб.
Ползучестью называют явление увеличения деформаций бетона во времени при действии постоянной статической нагрузки.
Ползучесть зависит от вида цемента и заполнителей, состава бетона, его возраста, условий твердения и влажности. Меньшая ползучесть наблюдается при применении высокомарочных цементов и плотного заполнителя - щебня из изверженных горных пород. Пористый заполнитель усиливает ползучесть, поэтому легкие бетоны имеют большую ползучесть по сравнению с тяжелыми.
Преждевременное высыхание бетона ухудшает структуру и увеличивает его ползучесть. Однако насыщение водой затвердевшего бетона может вызвать рост ползучести.
Ползучесть и связанная с ней релаксация напряжений может играть отрицательную роль. Например, ползучесть бетона приводит к потере натяжения; в предварительно напряженных железобетонных конструкциях.
Усадка и набухание бетона
При твердении на воздухе происходит усадка бетона, т.е. бетон сжимается и линейные размеры бетонных элементов сокращаются. Усадка слагается из влажностной, карбонизационной и контракционной составляющих. Вследствие усадки бетона в железобетонных и бетонных конструкциях возникают усадочные напряжения, поэтому сооружения большой протяженности разрезают усадочными швами во избежание появления трещин. Ведь при усадке бетона 0,3 мм/м в сооружении длиной 30 м общая усадка составляет около 10 мм. Массивный бетон высыхает снаружи, а внутри он еще долго остается влажным. Неравномерная усадка вызывает растягивающие напряжения в наружных слоях конструкции и появление внутренних трещин на контакте с заполнителем и в самом цементном камне.
Для снижения усадочных напряжений и сохранения монолитности конструкций стремятся уменьшить усадку бетона. Наибольшую усадку имеет цементный камень. Введение заполнителя уменьшает количество вяжущего в единице объема материала, при этом образуется своеобразный каркас из зерен заполнителя, препятствующий усадке. Поэтому усадка цементного раствора и бетона меньше, чем цементного камня.
Бетон наружных частей гидротехнических сооружений, цементно-бетонных дорог периодически увлажняется и высыхает. Колебания влажности бетона вызывают попеременные деформации усадки и набухания, которые могут вызвать появление микротрещин и разрушение бетона.
Морозостойкость бетона
Морозостойкость бетона определяют путём попеременного замораживания в холодильной камере при температуре от 15 до 20°С и оттаивания в воде при температуре 15-20°С бетонных образцов кубов с размерами ребра 10, 15 или 20 см (в зависимости от наибольшей крупности заполнителя). Образцы испытывают после 28 суток выдержки в камере нормального твердения или через 7 суток после тепловой обработки. Контрольные образцы, предназначенные для испытания на сжатие в эквивалентном возрасте, хранят в камере нормального твердения. Морозостойкость бетона зависит от качества примененных материалов и капиллярной, пористости бетона. Объем капиллярных пор оказывает решающее влияние на водопроницаемость и морозостойкость бетона. Морозостойкость бетона значительно возрастает, когда капиллярная пористость менее 7%.
Водонепроницаемость бетона
С уменьшением объема капиллярных макропор снижается водонепроницаемость и одновременно повышается морозостойкость бетона. Для уменьшения водонепроницаемости в бетон при его изготовлении вводят уплотняющие (алюминат натрия) и гидрофобизующие добавки. Нефтепродукты (бензин, керосин и др.) имеют меньшее, чем у воды, поверхностное натяжение, поэтому они легче проникают через обычный бетон. Для снижения фильтрации нефтепродуктов в бетонную смесь можно вводить специальные добавки (хлорное железо и др.). Проницаемость бетона по отношению к воде и нефтепродуктам резко уменьшается, если вместо обычного портландцемента применяют расширяющийся.
Теплофизические свойства бетона
Теплопроводность - наиболее важная теплофизическая характеристика бетона, в особенности применяемого в ограждающих конструкциях зданий.
Теплопроводность тяжелого бетона в воздушно-сухом состоянии 1,2 Вт/(м.°С), т.е. она в 2-4 раза больше, чем у легких бетонов (на пористых заполнителях и ячеистых). Высокая теплопроводность является недостатком тяжелого бетона. Панели наружных стен из тяжелого бетона изготавливают с внутренним слоем утеплителя.
Теплоемкость тяжелого бетона изменяется в узких пределах -0,75-0,92 Вт/(м. С°).
Линейный коэффициент температурного расширения бетона составляет около 0,00001 °С, следовательно, при увеличении температуры на 50 °С расширение достигает примерно 0,5 мм/м. Во избежание растрескивания сооружений большой, протяженности разрезают температурно-усадочными швами.
Крупный заполнитель и раствор, составляющие бетон, имеют различный коэффициент температурного расширения и будут по разному деформироваться при изменении температуры. Большие колебания температуры (более 80°С) смогут вызвать внутреннее растрескивание бетона вследствие различного теплового расширения крупного заполнителя и раствора. Характерные трещины распространяются по поверхности заполнителя, некоторые из них образуются в растворе, а иногда и в слабых зернах заполнителя. Внутреннее растрескивание можно предотвратить, если позаботиться о подборе составляющих бетона с близкими коэффициентами температурного расширения