Студопедия


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Биогеохимические циклы наиболее жизненно важных биогенных веществ




Круговорот отдельных веществ В. И. Вернадский назвал биогеохимическими циклами. Суть цикла в следующем: химические элементы, поглощенные организмом, впоследствии его покидают, уходя в абиотическую среду, затем, через какое-то время, снова попадают в живой организм и т. д. Этими циклами и круговоротом в целом обеспечиваются важнейшие функции живого вещества в биосфере.

Наиболее жизненно важными можно считать вещества, из которых в основном состоят белковые молекулы. К ним относятся углерод, азот, кислород, фосфор, сера.

Биогеохимические циклы углерода, азота и кислорода наиболее совершенны. Благодаря большим атмосферным резервам, они способны к быстрой саморегуляции. В круговороте углерода, а точнее – наиболее подвижной его формы – СО2, четко прослеживается трофическая цепь: продуценты, улавливающие углерод из атмосферы при фотосинтезе, консументы – поглощающие углерод вместе с телами продуцентов и консументов низших порядков, редуцентов – возвращающих углерод вновь в круговорот.

Скорость оборота СО2 составляет порядка 300 лет (полная его замена в атмосфере) (рис.2).

В Мировом океане трофическая цепь: продуценты (фитопланктон) – консументы (зоопланктон, рыбы) – редуценты (микроорганизмы) – осложняется тем, что некоторая часть углерода мертвых организмов, опускаясь на дно, «уходит» в осадочные породы и участвует уже не в биологическом, а в геологическом круговороте вещества.

Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд т этого элемента, что составляет 2/3 его запаса в атмосфере. Вмешательство человека в круговорот этого элемента приводит к возрастанию содержания СО2 в атмосфере.

Скорость круговорота кислорода — 2 тыс. лет, именно за это время весь кислород атмосферы проходит через живое вещество. Основной поставщик кислорода на Земле — зеленые растения. Ежегодно они производят на суше 53 ·109 т кислорода, а в океанах — 414 · 109 т.

Главный потребитель кислорода – животные, почвенные организмы и растения, использующие его в процессе дыхания. Процесс круговорота кислорода в биосфере весьма сложен, так как он содержится в очень многих химических соединениях.

Подсчитано, что на промышленные и бытовые нужды еже­годно расходуется 23% кислорода, который освобождается в процессе фотосинтеза.

Отдельные высоко развитые страны расходуют кислорода больше, чем производится его растениями на их территории.

Биогеохимический круговорот азота не менее сложен, чем углерода и кислорода, и охватывает все области биосферы. Поглощение его растениями ограничено, так как они усваивают азот только в форме соединения его с водородом и кислородом. И это при том, что запасы азота в атмосфере неисчерпаемы (78% от ее объема). Редуценты (деструкторы), а конкретно почвенные бактерии, постепенно разлагают белковые вещества отмерших организмов и превращают их в аммонийные соединения, нитраты и нитриты. Часть нитратов попадает в процессе круговорота в подземные воды и загрязняет их.




Опасность заключается также и в том, что азот в виде нитратов и нитритов усваивается растениями и может передаваться по пищевым (трофическим) цепям.

Азот возвращается в атмосферу вновь с выделенными при гниении газами. Роль бактерий в цикле азота такова, что если будет уничтожено только двенадцать их видов, участвующих в круговороте азота, жизнь на Земле прекратится.

Биогеохимический круговорот в биосфере, помимо кислорода, углерода и азота, совершают и многие другие элементы, входящие в состав органических веществ, — сера, фосфор, же­лезо и др.

Биогеохимические циклы фосфора и серы, важнейших биогенных элементов, значительно менее совершенны, так как основная их масса содержится в резервном фонде земной коры, в «недоступном» фонде.

Круговорот серы и фосфора — типичный осадочный биогеохимический цикл. Такие циклы легко нарушаются от различного рода воздействий и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом биофильных компонентов.

Фосфор содержится в горных породах, образовавшихся в .прошлые геологические эпохи. В биогеохимический круговорот он может попасть в случае подъема этих пород из глубины земной коры на поверхность суши, в зону выветривания.



Общий круговорот фосфора можно разделить на две части – водную и наземную. В водных экосистемах он усваивается фитопланктоном и передается по трофической цепи вплоть до консументов третьего порядка – морских птиц. Их экскременты снова попадают в море и вступают в круговорот, либо накапливаются на берегу и смываются в море.

Из отмирающих морских животных, особенно рыб, фосфор снова попадает в море и в круговорот, но часть скелетов рыб достигает больших глубин и заключенный в них фосфор снова попадает в осадочные породы.

В наземных экосистемах фосфор извлекают растения из почв и далее он распространяется по трофической сети. Возвращается в почву после отмирания животных и растений и с их экскрементами. Теряется фосфор из почв в результате их водной эрозии. Повышенное содержание фосфора на водных путях его переноса вызывает бурное увеличение биомассы водных растений, «цветение» водоемов и их эвтрофикацию. Большая же часть фосфора уносится в море и там теряется безвозвратно.

Сератакже имеет основной резервный фонд в отложениях и почве, но в отличие от фосфора имеет резервный фонд и в атмосфере. В обменном фонде главная роль принадлежит микроорганизмам. Одни из них восстановители, другие – окислители.

В горных породах сера встречается в виде сульфидов (FeS и др.), в растворах – в форме иона (SO42-), в газообразной фазе в виде сероводорода (H2S) или сернистого газа (SO2). В некоторых организмах сера накапливается в чистом виде (S2) и при их отмирании на дне морей образуются залежи самородной серы.

В морской среде сульфат-ион занимает второе место по содержанию после хлора и является основной доступной формой серы, которая восстанавливается автотрофами и включается в состав аминокислот.

Круговорот серы, хотя ее требуется организмам в небольших количествах, является ключевым в общем процессе продукции и разложения. Например, при образовании сульфидов железа (FeS), фосфор переходит в растворимую форму, доступную для организмов.

В наземных экосистемах сера возвращается в почву при отмирании растений, захватывается микроорганизмами, которые восстанавливают ее до H2S. Другие организмы и воздействие самого кислорода приводят к окислению этих продуктов. Образовавшиеся сульфаты растворяются и поглощаются растениями из поровых растворов почвы — так продолжается круговорот.

Однако круговорот серы, так же как и азота, может быть нарушен вмешательством человека. Виной тому прежде всего сжигание ископаемого топлива, а особенно угля. Сернистый газ (SO2) нарушает процессы фотосинтеза и приводит к гибели растительности.

Биогеохимические циклы легко нарушаются человеком. Так, добывая минеральные удобрения, он загрязняет воду и воздушную среду. В воду попадает фосфор, вызывая эвтрофикацию, азотистые высокотоксичные соединения и др. Иными словами, круговорот становится не циклическим, а ациклическим. Охрана природных ресурсов должна быть, в частности, направлена на то, чтобы ациклические биогеохимические процессы превратить в циклические.

Таким образом, всеобщий гомеостаз биосферы зависит от стабильности биогеохимического круговорота веществ в природе. Но являясь планетарной экосистемой, биосфера состоит из экосистем всех уровней, поэтому первоочередное значение для ее гомеостаза имеют целостность и устойчивость природных экосистем.





Дата добавления: 2014-01-31; просмотров: 2481; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8613 - | 7415 - или читать все...

Читайте также:

  1. III. Определение степени опасности инфекционных заболеваний при ЧС и их наиболее значимые показатели
  2. VII. Музыкальная жизнь Англии. Ораториальные жанры — наиболее значительная область творчества: пассионы — возвышенно-философское воплощение евангельской темы. Идея страстей трактована
  3. А. И. Копанев подчеркивал, что наиболее выразительно ланд-
  4. АВАРИИ С ВЫБРОСОМ РАДИОАКТИВНЫХ ВЕЩЕСТВ
  5. Аварии с выбросом радиоактивных веществ в окружающую среду
  6. Аварии с вытеканием сильнодействующих ядовитых веществ
  7. Аварийно химически опасные вещества
  8. Аварийно химически опасные вещества и химическая защита
  9. АГРОНАУКА В XVIII веке. обычно служилых людей. Иногда в помощь им в число участников досмотра включали и пашенных крестьян, как наиболее опытных в этом деле людей. В качестве
  10. Азотсодержащие гетероциклы
  11. Активность (энергия) живого вещества
  12. Активность А радиоактивного вещества – число спонтанных ядерных превращений в этом веществе в единицу времени


 

34.239.157.144 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.002 сек.