double arrow

Коррозионно-стойкие (нержавеющие) стали

Жаростойкие стали

Стали, устойчивые против коррозии

Коррозия – разрушение металла под действием окружающей среды. По механизму коррозионных процессов различают химическую и электрохимическую коррозию.

Химическая коррозия протекает при воздействии на металлы газов (газовая коррозия) и неэлектролитов. Газовая коррозия заключается в окислении металла, что приводит к постепенному разрушению.

Электрохимическая коррозия происходит под воздействием электролитов: водных растворов кислот, щелочей, солей, морской и речной воды, влажного воздуха (атмосферная коррозия), почвы и т.д.

Механизм электрохимической коррозии заключается в следующем: при соприкосновении металлов в среде электролита образуется гальваническая пара, в которой металл с более электроотрицательным электродным потенциалом (анод), отдавая электроны, разрушается. В сплавах и даже в чистых металлах между различными фазами могут возникать микрогальванические пары, где роль анода играют границы зерен и дефектные участки.

Жаростойкость (окалиностойкость) – это стойкость металла против газовой коррозии (окисления) при высоких температурах. При температурах выше 550°С железо окисляется с образованием рыхлого оксида FeO. Для повышения жаростойкости стали легируют хромом, а также дополнительно алюминием и кремнием, которые образуют на поверхности металла плотные оксидные пленки Cr2O3, Al2O3, SiO2, обладающие защитными свойствами. Жаростойкость стали, т.е. максимальная температура, при которой сохраняются защитные свойства пленки, не зависит от структуры стали, а определяется, главным образом, содержанием в ней хрома. Введение в сталь 5…8% Cr (15Х5) повышает жаростойкость до 750°С, 15…17% Cr (12Х17) – до 1000°С, 25…30% Cr (15Х25Т) – до 1100°С.

Жаростойкие стали применяют в условиях высоких температур при небольших механических нагрузках (печное оборудование, электро- нагреватели, теплообменники и др.) Жаростойкие стали используются, как правило, без упрочняющей термообработки. Многие жаростойкие стали одновременно являются и коррозионно-стойкими.

– это стали устойчивые против электрохимической коррозии. Для защиты от электрохимической коррозии в сталь вводят хром в количестве не менее 13%, при этом электрохимический потенциал становится положительным (рис. 45). Необходимо, чтобы хром находился в твердом растворе, для предотвращения связывания хрома в карбиды содержание углерода в стали должно быть небольшим.

Рис. 45. Влияние содержания хрома на электрохимический потенциал железохромистых сплавов

По химическому составу нержавеющие стали подразделяют на хромистые и хромоникелевые.

Хромистые нержавеющие стали, содержат, как правило, 13%, 17% или 25% Cr. Чем больше содержание хрома в стали, тем выше коррозионная стойкость.

Стали 12Х13 и 20Х13 относятся к полуферритному (феррито-мартенситному) классу. Термообработка: закалка+высокий отпуск, структура: сорбит отпуска+карбиды. Применяют их для работы в слабоагрессивных средах для деталей, подвергающихся ударным нагрузкам – клапанов гидравлических прессов, предметов домашнего обихода.

Стали 30Х13, 40Х13 относятся к мартенситному классу. Термообработка: закалка+низкий отпуск. Структура: мартенсит отпуска с высокой твердостью 50…60 HRC. Применяют их для хирургических инструментов, карбюраторных игл и т.п.

Высокохромистые стали 12Х17, 15Х25Т относятся к ферритному классу. В них отсутствуют полиморфные превращения, поэтому они не упрочняются термообработкой. Структура: легированный феррит. Эти стали называют кислотостойкими, применяют их для изготовления оборудования пищевой, легкой и химической промышленности.

Хромоникелевые нержавеющие стали аустенитного класса имеют пониженное содержание углерода (0,04…0,17%С) для предотвращения образования карбидов, содержат 17…19%Cr для защиты от коррозии и 8…12%Ni для стабилизации аустенитной структуры: 12Х18Н8, 08Х18Н10. В равновесном состоянии стали имеют структуру аустенит+карбиды хрома М23С6. Путем закалки от температуры 1100…1150°С в воде или на воздухе обеспечивается растворение карбидов и получение однофазной структуры легированного аустенита.

Эти стали не упрочняются термообработкой, повышение прочности достигается наклепом в результате холодной пластической деформации. Хромоникелевые стали обладают высокой пластичностью, коррозионной стойкостью в окислительных и других агрессивных средах, хорошей обрабатываемостью давлением.

Аустенитные хромоникелевые стали склонны к межкристаллитной коррозии (МКК) - коррозии по границам зерен. Это происходит из-за локального выделения карбидов хрома и обеднения хромом пограничных участков аустенита. Чем меньше в стали углерода, тем ниже ее склонность к МКК. Для снижения склонности к МКК в стали вводят титан или ниобий (например, 12Х18Н9Т или 08Х18Н12Б), которые связывают углерод в карбиды TiC или NbC, сохраняя весь хром в твердом растворе.

Аустенитные хромоникелевые стали отличаются широким масштабом применения для различных изделий, работающих в агрессивных средах, в частности, в химической и пищевой промышленности.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: