Эритроциты и бактерии - перевозчики нанокапсул с лекарствами

Нанотехнологии в криминалистике

Магнитные наностержни в жёстких дисках компьютеров

Поверхность типичного магнитного диска состоит из микроскопических секторов с ориентированными в магнитном поле микрочастицами. Когда головка накопителя проходит над поверхностью сектора, она может менять ориентацию частиц в секторе на противоположную; в процессе чтения происходит анализ суммарного магнитного поля всех частиц сектора. Для увеличения емкости накопителя приходится уменьшать размер самих частиц, однако, следствием такого уменьшения является то, что индукция магнитного поля становится не достаточна для получения точной информации о секторе данных. Поэтому увеличивать плотность записи информации на магнитном диске, используя старые технологии, становится всё сложнее.

Чтобы решить эту проблему, разработан способ синтеза магнитных наностержней длиной от 20 до 200 нм из сплава железа и платины. Полученные наностержни имеют однотипную форму и однородную магнитную ориентацию атомов, создавая вокруг сильное магнитное поле, что очень важно для считывающих головок жёсткого диска. Наностержни можно «упаковывать» на поверхности диска в длинные и тонкие "пучки", ориентируя их по своему желанию, что, по мнению ученых, может стать основой для разработки следующего поколения носителей информации высокой плотности.

Нанотехнологии находят своё применение при исследовании отпечатков пальцев. Для контрастирования жирных следов пальцев использовали взвесь золотых наночастиц, обладающих гидрофобными свойствами, т.е. способных прилипать к поверхностям, покрытым жиром. Эти наночастицы, прилипая к жирным бороздкам отпечатков пальцев, формировали значительно более четкий рисунок, чем можно было бы получить с помощью традиционной техники. При этом время, затраченное на процедуру, не превышало трех минут.

Болезнь человека, как правило, связана с заболеванием не всех, а часто небольшой части его клеток. Но, когда мы принимаем таблетки, то лекарство растворяется в крови, а потом с кровотоком действует на все клетки – больные и здоровые. При этом у здоровых клеток ненужные лекарства могут вызывать так называемые побочные эффекты, например, аллергические реакции. Поэтому давнишней мечтой врачей было выборочное лечение только больных клеток, при котором лекарство доставляется адресно и очень маленькими порциями. Нанокапсулы с лекарством, способные прилипать только к определённым клеткам может быть решением этой проблемы медицины.

Основное препятствие, мешающее использовать нанокапсулы с лекарствами для адресной доставки больным клеткам – наша иммунная система. Как только клетки иммунной системы встречают инородные тела, в том числе и нанокапсулы с лекарствами, они пытаются разрушить и удалить их останки из кровяного русла. И чем успешней они это делают, тем лучше наш иммунитет. Поэтому, если мы введём в кровь любые нанокапсулы, наша иммунная система уничтожит нанокапсулы до того, как они дойдут до клеток-адресатов.

Чтобы обмануть нашу иммунную систему, предлагают использовать для доставки нанокапсул красные кровяные клетки (эритроциты). Наша иммунная система легко узнаёт «своих» и никогда не нападает на эритроциты. Поэтому, если прикрепить нанокапсулы к эритроцитам, то клетки иммунной системы, «увидев» плывущий по кровеносному сосуду «свой» эритроцит, не станут «досматривать» его поверхность, и эритроцит с приклеенными нанокапсулами, поплывёт дальше к клеткам, кому эти нанокапсулы адресованы. Эритроциты в среднем живут около 120 дней. Опыты показали, что продолжительность «жизни» нанокапсул, прикреплённых к эритроцитам, оказывается в 100 раз большей, по сравнению с тем случаем, когда их просто вводят в кровь.

Обычную бактерию тоже можно нагрузить наночастицами с лекарствами, и тогда она сможет работать в качестве транспорта по доставке этих лекарств клеткам. Размеры наночастиц – от 40 до 200 нанометров, их ученые научились прикреплять к поверхности бактерий с помощью специальных молекул. На одной бактерии можно разместить до нескольких сотен наночастиц разного типа.

Бактерии обладают естественной способностью проникать в живые клетки, являясь идеальными кандидатами для доставки лекарств. Особенно это ценно в генной терапии, где необходимо доставить фрагменты ДНК по назначению, не убив при этом здоровую клетку. После того, как гены попадают в клеточное ядро, оно начинает вырабатывать специфические белки, корректируя, таким образом, генетическое заболевание. Это открывает новые возможности в области генной терапии. Кроме того, можно заставить бактерии переносить наночастиц с ядом по адресу, например, убивать раковые клетки.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: