Автономные системы управления

Системы управления движением торпед

Реактивные ЭСУ торпед

Реактивные ЭСУ подразделяются:

- на ракетные;

- гидрореактивные.

 
 

Источниками энергии реактивных ЭСУ являются вещества, приведённые на рис. 2.7.

Они представляют собой топливные заряды, выполненные в виде цилиндрических шашек или стержней, состоящих из смеси комбинаций представленных веществ (горючего, окислителя и добавок). Эти смеси обладают свойствами пороха. Реактивные двигатели не имеют промежуточных элементов – механизмов и гребных винтов. Основные части такого двигателя – камера сгорания и реактивное сопло. В конце 80-х годов в некоторых торпедах начали использовать гидрореагирующие топлива – сложные по составу твёрдые вещества на основе алюминия, магния или лития. Подогретые до температуры плавления, они бурно реагируют с водой, выделяя большое количество энергии.

Движущаяся торпеда совместно с окружающей её морской средой образует сложную гидродинамическую систему. Во время движения на торпеду действуют:

- сила тяжести и выталкивающая сила;

- тяга двигателя и сопротивление воды;

- внешние воздействующие факторы (волнение моря, изменение плотности воды и др.). Первые два фактора известны и могут быть учтены. Последние – имеют случайный характер. Они нарушают динамическое равновесие сил, отклоняют торпеду от расчётной траектории.

Системы управления (рис. 2.8) обеспечивают:

- устойчивость движения торпеды на траектории;

- изменение траектории движения торпеды в соответствии с заданной программой;

 
 

- изменение траектории движения при воздействии на торпеду физического поля цели.

Системы управления подразделются:

- на автономные;

- телеуправления;

- самонаведения.

Осуществляют автоматическую стабилизацию и программное регулирование движения торпеды на траектории.

Приборы управления движением торпеды по глубине (hт)

и дифференту (q)

 
 

В качестве примера рассмотрим структуру и принцип действия сильфонно - маятникового автомата глубины, изображенного на рис. 2.9.

Основой прибора является гидростатический аппарат на базе сильфона (гофрированная труба с пружиной) в комбинации с физическим маятником. Давление воды воспринимается крышкой сильфона. Оно уравновешивается пружиной, упругость которой устанавливается перед выстрелом в зависимости от заданной глубины движения торпеды.

Действие прибора осуществляется в следующей последовательности:

- изменение глубины торпеды относительно заданной;

- сжатие (или растяжение) пружины сильфона;

- перемещение зубчатой рейки;

- вращение шестерни;

- поворот эксцентрика;

- смещение балансира;

- движение клапанов золотника;

- перемещение поршня рулевой машинки;

- перекладка горизонтальных рулей;

- возврат торпеды на установленную глубину.

В случае появления дифферента торпеды происходит отклонение маятника от вертикального положения. При этом аналогично предыдущему перемещается балансир, что приводит к перекладке тех же рулей.

Приборы управления движением торпеды по курсу (KТ)

Принцип построения и действия прибора может быть пояснён схемой, изображённой на рис. 2.10.

Основой прибора является гироскоп с тремя степенями свободы. Он представляет собой массивный диск с лунками (углублениями). Сам диск подвижно укреплён в рамках, образующих так называемый кардановый подвес.

В момент выстрела торпеды воздух высокого давления из воздушного резервуара поступает на лунки ротора гироскопа. За 0.3…0,4 с ротор набирает до 20000 оборотов в минуту. Дальнейшее увеличение числа оборотов до 40000 и поддержание их на дистанции производится путем подачи напряжения на ротор гироскопа, являющегося якорем асинхронного ЭД переменного тока частотой 500 Гц. При этом гироскоп приобретает свойство сохранять неизменным направление своей оси в пространстве. Эта ось устанавливается в положение, параллельное продольной оси торпеды. В таком случае токосъёмник диска с полукольцами находится на изолированном зазоре между полукольцами. Цепь питания реле разомкнута, контакты реле KP тоже разомкнуты. Положение клапанов золотника определяется пружиной.

 
 

При отклонении торпеды от заданного направления (курса) поворачивается диск, связанный с корпусом торпеды. Токосъёмник оказывается на полукольце. Через обмотку реле начинает протекать ток. Замыкаются контакты Kp. Электромагнит получает питание, его стержень опускается вниз. Клапаны золотника смещаются, рулевая машинка перекладывает вертикальные рули. Торпеда возвращается к установленному курсу.

Если на корабле установлен неподвижный торпедный аппарат, то при торпедной стрельбе к углу упреждения j (см.рис.1.5) должен быть алгебрарически приплюсован курсовой угол, под которым находится цель в момент залпа (q3). Полученный угол (ω), называемый углом гироскопического прибора, или углом первого поворота торпеды, может быть введён в торпеду перед выстрелом путём поворота диска с полукольцами. Таким образом исключается необходимость изменения курса корабля.

Приборы управления торпедой по крену (γ)

Крен торпеды – это поворот её вокруг продольной оси. Причинами крена являются циркуляция торпеды, перегребание одного из винтов и др. Крен приводит к отклонению торпеды от заданного курса и смещениям зон реагирования системы самонаведения и неконтактного взрывателя.

Креновыравнивающий прибор представляет собой сочетание гировертикали (вертикально установленного гироскопа) с маятником, перемещающимся в перпендикулярной плоскости, продольной оси торпеды. Прибор обеспечивает перекладку органов управления γ – элеронов в разные стороны – «враздрай» и, таким образом, возвращение торпеды к значению крена, близкому к нулю.

Приборы маневрирования

 
 

Предназначены для программного маневрирования торпеды по курсу на траектории движения. Так, например, в случае промаха торпеда начинает циркуляцию или зигзаг, обеспечивая неоднократное пересечение курса цели (рис. 2.11).

Прибор связан с наружным гребным валом торпеды. По числу оборотов вала определяется пройденное расстояние. В момент достижения установленной дистанции начинается маневрирование. Дистанция и вид траектории маневрирования вводятся в торпеду перед выстрелом.

Точность стабилизации движения торпеды по курсу приборами автономного управления, имея погрешность ~1% от пройденной дистанции, обеспечивает эффективную стрельбу по целям, идущим постоянным курсом и скоростью на дистанции до 3,5…4 км. На больших дистанциях эффективность стрельбы падает. При движении цели переменными курсом и скоростью точность стрельбы становится неприемлемой даже и на меньших расстояниях.

Стремление повысить вероятность поражения надводной цели, а также обеспечить возможность поражения ПЛ в подводном положении на неизвестной глубине, привели к появлению в 40-х годах торпед с системами самонаведения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: