Студопедия


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

ДЕШИФРИРОВАНИЕ




ГИДРОГЕОЛОГИЧЕСКОЕ И ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКОЕ

При инженерно-геологических и гидрогеологических изысканиях аэрометоды применяются на всех крупных объектах, где природные условия района и характер проектного задания благоприятны для их применения. Сюда относятся железнодорожные и шоссейные изыскания на всех их стадиях, при изучении водохранилищ, постройке плотин, спрямлению русел рек, проектированию портов, а также весь комплекс изысканий, связанных с осушением или обводнением земель.

Ценность применения космической информации в гидрогеологических исследованиях заключается в том, что обработка МДЗ помогает исследователю устанавливать местоположение структурных (пликативных и дизъюнктивных) форм, которые могут влиять на динамику подземных вод.

При гидрогеологических исследованиях материалы космических съемок могут найти применение при решении следующих задач: изучении региональных закономерностей распространения подземных вод; мелко- и среднемасштабном гидрогеологическим картировании и районировании; исследовании условий формирования поверхностного и подземного стока и оценке взаимосвязи поверхностных и подземных вод.

В настоящее время КС широко используется как при общих, так и детальных поисках подземных вод речных долин, песчаных массивов, обводненных зон разрывных нарушений и повышенной трещиноватости горных пород, конусов выноса и областей развития карста.

Дешифрирование МДЗ является обязательным элементом детальных поисковых работ, так как получаемая в результате дешифрирования информация повышает общую информативность гидрогеологических карт, используемых при поиске, позволяет связать точечные и профильные наземные наблюдения в единую картину гидрогеологических условий территорий и более эффективно планировать проведение наземных работ.

В решении этих задач особенно важную роль играет предполевое дешифрирование МДЗ, позволяющее рационально разместить на изучаемой территории ключевые участки и региональные профили.

Гидроиндикация неглубоко залегающих подземных вод, активно влияющих на формирование свойств физиономических компонентов ландшафта, определяется чаще всего глубиной проникновения корневой системы растений-гидроиндикаторов. Дешифрирование здесь будет основываться на относительно хорошо разработанных системах геоботанических, геоморфологических и комплексных ландшафтных индикаторов. Например: в засушливых районах заросли джанатака, тамариска, саксаула, тростника и др. растений локализованы над залежами пресных или солоноватых вод, залегающих на глубине 1,5-10 м.

Гидроиндикация подземных вод, располагающихся ниже границы корневых систем и практически не влияющих на растительность и рельеф территории, основана на оценке инфильтрации атмосферных осадков, влияющих на минерализацию и водный баланс подземных вод. Такая оценка производится за счет выявления отрицательных форм рельефа, способствующих инфильтрации, и густоты сети временных водопотоков, увеличивающей значение поверхностного стока.




Гидроиндикация напорных вод, отделенных от поверхности водоупором, производится не прямо, а косвенно – по результатам воздействия выделенных на МДЗ тектонических структур на инфильтрацию осадков и фильтрацию подземного стока.

Особое значение для движения подземных вод как платформенных, так и горно-складчатых областей имеют дизъюнктивные элементы геологической структуры, достаточно надежно выделяемые на МДЗ в виде линеаментов или их систем. Гидрогеологическая роль разрывных нарушений устанавливается по приуроченности к ним крупных концентрированных выходов подземных вод, высокодебитных скважин и наличию поверхностного стока, обусловленного подземным питанием. Комплексный анализ геометрических (протяженность, ширина, азимут простирания), структурных (кинематика, амплитуда), ландшафтных (распределение растительного покрова и рисунка гидросети) и дешифровочных (фототон) признаков позволяет получить данные для гидрогеологических целей.

Изучение гидрогеологических условий по КС и АС является одним из наиболее сложных видов геологического дешифрирования, так как основной объект исследования – подземные воды- прямого отображения на снимках практически не получает (за исключением обычно очень немногочисленных источников). Поэтому при дешифрировании приходится полагаться почти исключительно на различную косвенную информацию.



Это существенно усложняет процесс дешифрирования и его достоверность. Опыт свидетельствует, однако, о том, что использование КС и АС оказывается полезным при решении по крайней мере трех важных гидрогеологических задач: а) региональное гидрогеологическое изучение территории (гидрогеологические съемки мелкого и среднего масштаба); б) поиски подземных вод в зонах распространения вечной мерзлоты, пустынь и некоторых других регионах со сложными природными условиями; в) наблюдения за изменениями гидрогеологических условий (глубины залегания, минерализации грунтовых вод, при осуществлении мелиораций, строительстве каналов, водохранилищ и других гидротехнических сооружений. Решение первых двух задач имеет много общего, поэтому рассмотрим их здесь совместно.

Как отмечается в учебниках и руководствах по гидрогеологическим исследованиям, основными задачами гидрогеологических съемок мелкого и среднего масштаба являются: а) установление распространения и условий залегания подземных вод на изучаемой территории; б) выявление условий их питания, движения и разгрузки; в) определение водообильности основных водоносных горизонтов; г) изучение минерализации и химического состава подземных вод.

В современной практике решение этих задач достигается постановкой комплексных исследований с использованием как аэрокосмических методов (космическая и аэрофотосъемка), так и различных методов наземной гидрогеологической разведки и опробования.

Аэрокосмические методы применяются главным образом на начальном этапе исследований и позволяют составить общее представление о гидрогеологических условиях изучаемой территории. Полученные при этом результаты обычно не могут претендовать на большую полноту и достоверность, но существенно облегчают постановку дальнейших более детальных наземных исследований. Результаты дешифрирования используются также при осуществлении гидрогеологического районирования территории и составлении гидрогеологических карт, когда возникают такие задачи, как экстраполяция результатов точечных и линейных исследований (маршруты, профили) на окружающие площади, проведение границ и др.

Возможности гидрогеологического дешифрирования, объем и достоверность информации, получаемой о подземных водах, в большей степени зависят от масштаба используемых снимков. Это позволяет выделить несколько уровней гидрогеологического дешифрирования (Востокова, 1976).

Верхний уровень дешифрирования, обеспечивающий получение наиболее общей информации, связан с использованием мелкомасштабных КС (1:1 000 000 и мельче). Снимки этих масштабов позволяют выделить крупные морфоструктуры и составить соответствующую карту или схему. На основании этой карты можно установить в первом приближении положение, типы и форму крупных гидрогеологических структур, определить соотношение между ними, выявить области питания, транзита, накопления и разгрузки подземных вод. При дешифрировании могут быть выявлены также некоторые характерные типы ландшафтов, в том числе и «гидрогенные» (по Е.А.Востоковой), структура и фотоизображение которых определяются в той или иной степени гидрогеологическими условиями территории (наличием, глубиной залегания, минерализацией грунтовых вод). С ними связаны определенные типы рельефа, ассоциации растительных сообществ и пр. К их числу относятся ландшафты аллювиальных и дельтовых равнин, солончаковые, болотные ландшафты и многие другие. Выделение таких ландшафтов в сочетании с геоморфологическими и геоструктурным дешифрированием позволяет дать определенные прогнозы в отношении распределения различных типов грунтовых вод, глубин их залегания, а иногда и степени минерализации.

По результатам дешифрирования могут быть намечены также участки, перспективные в отношении обнаружения запасов неглубоко залегающих пресных грунтовых вод, пригодных для водоснабжения, мелиорации или обводнения изучаемой территории.

Для регионов с хорошо изученными гидрогеологическими условиями (например, европейская часть СССР, ряд высокоразвитых стран Европы и Америки) дешифрирование этого уровня большого практического значения не имеет, хотя и позволяет вносить определенные уточнения и изменения в различные региональные гидрогеологические построения (мелкомасштабные карты гидрогеологического районирования и др.). Значительно более эффективным оно оказывается для территорий, слабо изученных в гидрогеологическом отношении, где региональные гидрогеологические исследования ранее не проводились, а имеющаяся информация носит разрозненный характер.

Второй уровень гидрогеологического дешифрирования связан с использованием среднемасштабных космических (1:200 000 – 1:1 000 000) или примерно отвечающих им по информативной емкости и дешифровочным свойствам мелкомасштабных (1:100 000 –1:120 000) аэроснимков. Снимки этих масштабов обеспечивают значительно более уверенное геологическое и ландшафтное дешифрирование и позволяют составить (или уточнить) комплекс геологических (структурно-тектоническая, геоморфологическая, геологическая дочетвертичных и четвертичных отложений) и ландшафтных карт и схем, что создает основу для гидрогеологического дешифрирования. При этом снимки сохраняют такие достоинства, как большая обзорность и отсутствие загруженности фотоизображения второстепенными деталями, что существенно облегчает выявление региональных закономерностей, которые на более крупных снимках часто теряются. Поскольку частные индикаторы (растительные сообщества, формы микрорельефа) и прямые водопроявления (источники, можачины и др.) на снимках этого масштаба еще, как правило, неразличимы, общий методический подход к дешифрированию остается в этом случае в основном тем же, что и при использовании снимков более мелкого масштаба. С одной стороны, учитываются все особености природных условий территории, определяющие формирование, накопление, движение и разгрузку грунтовых вод, а с другой – используются ландшафтные индикаторы. В роли последних выступают ландшафты и их морфологические части в ранге местностей и урочищ (если они занимают достаточно большие площади).

Дешифрирование позволяет в первую очередь выделить: а) районы, где на поверхности земли или вблизи нее залегают различные изверженные, метаморфические или сильно литифицированные осадочные, преимущественно дочетвертичные, отложения; б) районы с мощным покровом рыхлых неоген-четвертичных отложений.

В районах первого типа обычно удается в первом приближении оценить коллекторские свойства пород (на основании состава пород, тектоники, характера выветривания). Хорошо дешифрируются крупные тектонические нарушения, с которыми часто связана разгрузка глубинных подземных вод и повышенная обводненность пород. В отдельных случаях дешифрируются водопроявления (крупные источники, пластовые выходы подземных вод и др.).

В районах второго типа дешифрирование позволяет выделить и оконтурить площади распространения песчаных и грубообломочных отложений, наиболее благоприятных для накопления грунтовых вод, и отделить их от водоупорных пород, где неглубоко залегающие подземные воды отсутствуют или имеют спорадическое распространение. Дальнейшее дешифрирование, основанное на использовании комплексных индикаторов, позволяет дать примерную оценку глубины залегания, а иногда и степени минерализации грунтовых вод. При этом успех дешифрирования и в этом случае в большей степени зависит от наличия априорной информации, позволяющей установить зависимости между типами ландшафтов и различными характеристиками грунтовых вод. Установление состава отложений позволяет сделать прогнозы и в отношении водообильности грунтовых вод. Полученная информация позволяет составить прогнозные карты грунтовых вод, подлежащие уточнению при дальнейших наземных исследованиях.

Третий и четвертый уровни дешифрирования связаны соответственно с использованием среднемасштабных (1:12 000-1:35 000) и крупномасштабных (1:1000 и 1:12 000) аэроснимков. Здесь широкое применение могут найти не только комплексные индикаиторы (природно-территориальные комплексы в ранге местностей, урочищ), но и частные индикаторы (главным образом растения – фреатофиты и их ассоциации). На снимках уверенно фиксируются также все виды водопроявлений: источники, пластовые выходы, мочажины и др. В благоприятных условиях дешифрирование позволяет достаточно уверенно оценить глубину залегания грунтовых вод, а в некоторых случаях и степень их минерализации. Иногда можно выявить также направление «потоков» грунтовых вод и пр.

К недостаткам снимков среднего и крупного масштаба относятся малая их обзорность и перегруженность деталями, что сильно затрудняет выявление общих закономерностей.

Отмеченные достоинства и недостатки снимков разного масштаба свидетельствуют о целесообразности их комплексного использования. При гидрогеологических съемках мелкого и среднего масштаба оптимальным в смысле эффективности дешифрирования и затрат времени на эту операцию следует считать сочетание КС среднего масштаба или АС мелкого масштаба с АС среднего или крупного масштаба. Первые обеспечивают в этом случае выделение контуров, различающихся по рисунку фотоизображения, вторые – расшифровку рисунков и получение основных характеристик грунтовых вод в пределах выделенных контуров.

Возможности гидрогеологического дешифрирования, состав используемых индикаторов, а в известной степени и используемые методические приемы зависят в большей мере от физико-географических условий и геологического строения территорий.

Дешифрирование границ палеодины р. Волги

В 1992 г. автором настоящего курса лекций выполнено дешифрирование пакета МДЗ с целью определения границ палеодолины р. Волги. Терригенные породы, выполняющие древнюю долину, являются коллекторами пресных вод, пригодных для водоснабжения населенных пунктов, в т.ч. и г.Казани.

В Татарстане границы палео-Волги отбивались по материалам буровых скважин различного назначения. Последние располагаются по площади весьма неравномерно и их явно недостаточно, чтобы детально проследить контуры палеодолины.

Начиная с 50-х годов XX в. ряд исследователей занимался реконструкцией плиоценовых «врезов» в палеозойские породы в пределах Татарстана (Н.Н.Нелидов, С.Г.Каштанов, А.В.Кирсанов, Н.П.Медведева и др.). Однако границы палеодолин на их картах и схемах практически не совпадают.

В своей работе мы использовали уже имеющиеся геолого-геофизические материалы и аэрокосмическую информацию для территории Татарстана, т.е. применили комплексный подход к решению поставленной задачи.

Выявление палеодолин крупных рек и их притоков динстанционными методами здесь не проводилось. Поэтому, прежде чем отрабатывать методику дешифрирования, необходимо было установить минимальный пакет аэро- и космоснимков, позволяющий с достаточной степенью достоверности отдешифрировать границы палеодолин. Авторы остановили свой выбор на проведении площадной аэросъемки с помощью многоспектральной сканерной съемочной системы «Матра», аэрофотоаппаратура ТАФА-10 и на проведении космической съемки радиолокатором бокового обзора.

Спектральные диапазоны системы «Матра»:

1. 550±20 нм

2. 640±20 нм

3. 720±30 нм

4. 830±30 нм

5. 10-12 мкм (тепловой канал)

6. 8-14 мкм (тепловой канал).

Разрешающая способность с высоты 10 км.- 30 м. максимальный дианамический диапазон ИК-радиометра – 20 – +400С.

Форматы снимков 18 х 18 см.

Исследование температурных полей методами дистанционного зондирования выполнялись в дальнем ИК-диапазоне (8-14 мкм), используя шестой канал аппаратуры «Матра». Интенсивность ИК-излучения в диапазоне 8-14 мкм непосредственно связывается (особенно в ночное время) с температурой и типом горных пород и почвы, лежащих на поверхности. Температура поверхности зависит от состояния атмосферы и теплового потока, идущего из глубины Земли. Глубинное тепло, достигающее поверхности, зависит от теплопроводности и структуры горных пород и несет в себе информацию о погребенных геологических структурах.

Таким образом, возможно получить некоторое представление о погребенных геологических структурах, исследуя распределения тепловых полей региона.

Исследования полей влажности методами дистанционного зондирования оптимально проводить в радиодиапазоне, используя радиолокационные системы бокового обзора (РЛС БО).

Нами использовался РЛС БО с длиной волны 10 см, установленной на космическом аппарате «Салют», позволяющая получать РЛ-снимки в полосе обзора 40 км с разрешением 15 м.

Это аппаратура позволяет на радиолокационных снимках обнаруживать участки с повышенной влажностью, а также участки с поверхностными водами. Они выделяются в виде затемненных областей, обладающих малой ЭПР.

Основной задачей съемок является получение изображений земной поверхности в виде черно-белых и цветных фотографий, а также их многоспектральной радиационной картины в виде цветных фотоснимков.

Материалы аэросъемок предназначены для разработки метода тематического дешифрирования, а именно картирования палеодолин.

Материалы аэросъемок пригодны для отработки методики с применением математических методов и теории информации к дешифрированию аэрофотоматериалов с накоплением и хранением данной информации на магнитных носителях и обработкой ее на ЭВМ.

С целью получения материалов во всех спектральных диапазонах, а также из экономических соображений, аэросъемка производится днем, вблизи полудня.

В связи с тем, что на территории Среднего Поволжья по материалам дистанционного зондирования палеодолины крупных рек ранее не оконтуривались, в первую очередь необходимо было отработать методические приемы, позволяющие успешно решить поставленную задачу.

Для этой цели, в качестве эталонного был подобран участок палеодолины р. Волги в районе с.Столбищи, где границы древней долины надежно и детально установлены по результатам бурения и профильного ВЭЗ.

Основой, разработанной авторами данного отчета методики, является геоиндикациолнный метод дешифрирования аэро- и космоснимков.

Метод основывается на известных представлениях о взаимосвязи ландшафта территории с ее геологическим строением, в частности о взаимосвязи отдельных компонентов ландшафта с определенными геологическими объектами и процессами.

Основной задачей дешифрирования на Столбищенском участке было выявление возможно большего числа компонентов ландшафта, являющихся индикаторами (поверхностными признаками) палеодолины Волги.

Методические приемы любого вида геологического дешифрирования имеют свою этапность и последовательность.

На первом этапе исследования осуществлялось обзорное или обзорно-региональное дешифрирование в масштабе 1:1000000 или мельче. Целью его является, в данном конкретном случае, грубое выявление местоположения палеодолины и ее общая конфигурация.

За неимением материалов дистанционного зондирования масштаба 1:1 000 000, нами выполнено дешифрирование космоснимка (КС) видимой области масштаба 1:500 000 в черно-белом исполнении, съемка проведена в 1983 году.

Дешифрирование этого КС позволило уверенно определить контур палеодолины р. Волги на участке от р. Казанки до северного берега нижнекамского водохранилища. От устьевого отрезка р. Казанки на юг в субмеридиональном направлении простирается палеодолина Волги шириной около 0,5 км. Южнее о. Верхний Кабан она делится на два рукава. Борта палеодолины хорошо дешифрируются по фототону, а также по цепи озер, участков повышенной увлажненности (более темный фототон), по руслам ручьев, мелких рек и долинам оврагов.

На втором этапе выполнялось региональное дешифрирование в масштабе 1:200 000 или близком ему. В этот этап уточнялись границы дешифрируемых объектов с большей детальностью. В нашем распоряжении имелись радиолокационные КС (РЛС) масштаба 1:270 000 в черно-белом исполнении и масштаба 1:150 000, выполненные в псевдоцвете и черно-белые. На черно-белом снимке масштаба 1:150 000 участки высокой влажности имеют более темный фототон. На снимке борта обоих рукавов палеодолины отбиваются по цепи контуров ландшафта, характеризующихся повышенной увлажненностью поверхности (розовый и фиолетовый цвет участков). Наиболее сухие участки земной поверхности (краснокоричневый и желтый цвет) заключены между рукавами палеодолины.

Дешифрирование на Столбищенском участке затруднено в восточной и юго-восточной частях полигона. Здесь находится русло р.Меша, вследствие чего участки повышенной влажности, связанные с подтоком вод к земной поверхности по склонам палеодолины р. Волги, маскируются переувлажненными участками долины р. Меша и ее притоков.

На третьем этапе дешифрирование проводилось на материалах дистанционного зондирования масштаба 1:50 000 –1:25 000. Целью его является детальное определение границ палеодолины р. Волги.

Дешифрирование проводилось на увеличенных отпечатках КС РЛС – снимка масштаба 1: 150 000 до масштаба 1: 50 000 и на псевдоцветных АС масштаба 1:24 000. Из имеющихся увеличенных отпечатков РЛС – снимков и АС составлены фотосхемы. Ранее собранные геологические материалы по Столбищенскому участку: 1) геологическая карта дочетвертичных отложений; 2) карта изомощностей неоген-четвертичных отложений; 3) карта эрозионной поверхности донеогеновых отложений, 4) структурная карта по кровле ассельского яруса, 5) геологическая карта дочетвертичных отложений и др. приведены в масштаб фотосхемы (1:24 000) и вычерчены на прозрачной основе (лавсановой кальке). При дешифрировании они использовались как накладки на фотосхему. При дешифрировании применялась также схема результатов геоморфологического дешифрирования Столбищенского участка, выполненная в масштабе 1:25 000.

В пределах Столбищенского участка оба борта западного рукава палеодолины Волги от с. Песчаные Ковали до д.Беляково дешифрируются уверенно по цепи мелких озер, оврагов,часто залесенных, заболоченных участков.

По результатам проведенных в пределах палеодолины Волги исследований устанавливаются определенные особенности в распределении аллювиальных фаций. В центральной, наиболее углубленной части палеодолины, располагаются мощные песчано-гравийно-галечные отложения русловых фаций. Мощности заметно изменяются по простиранию палеодолины. Так, в Ново-Николаевке на глубине 113-115 м вскрыты крупнозернистые пески (12 м) подстилаемые гравием (25-27 м). Эти отложения подпираются с боков (вероятно пойменные фации) и перекрываются сверху глинами. В данном разрезе, в частности, пачка перекрывающих глин имеет мощность 10 м. Выше располагаются чередующиеся глинистые отложения с невыдержанными песчаными прослоями и пачками песка мощностью от 0,6 до 6,5 м. Строгой стратиграфической приуроченности песчаные пропластки не имеют. Значение их, как источника водоснабжения, невелико. В этом отношении наибольшую роль играют грубозернистые породы русловых фаций, приуроченные к наиболее глубоким частям палеодолины. В связи с тем, что грубозернистые отложения как бы вложены в глинистую толщу, воды приобретают значительный напор (до 65 м). Южнее мощность водонасыщенных песчано-гравийно-галечных отложений возрастает от 37-39 м до 48 м (Горки) и далее до 50 м (Мясокомбинат, пос. Давликеево).

Таким образом в разрезе палеодолин отчетливо выделяется центральная наиболее глубокая и водообильная часть (русловые фации палеорек). С боков и сверху водоносные толщи перекрыты глинами, которые создают своеобразный барраж для вод, движущихся к современному руслу Волги со стороны водоразделов, значительно повышая их уровень, особенно со стороны палеодолины, обращенной к водоразделу. Это, вероятно, и определяет наличие карста, суффозионных «блюдец» и западин, участков заболоченности и т.п.

Этими особенностями геолого-гидрогеологического строения и объясняется распределение участков повышенной влажности на границах палеоразрезов. Вполне объяснимы и несколько большие по ширине, чем реальные, размеры палеодолин, выявляемые при дешифрировании аэро- и космоснимков. Последнее связано с постепенным переходом водоносных горизонтов коренных пород в водоносные горизонты четвертичного аллювия и, наконец, в локальные водоносные горизонты плиоцена. Широкое развитие глин в верхней части плиоценового разреза приводит к задержке инфильтрующихся вод непосредственно на границах с неогеновыми отложениями, создавая переувлажненные участки. Все это и создает благоприятные условия для выделения и прослеживания палеодолин дистанционными методами, поскольку повышенная влажность грунтов на границах палеодолины обуславливает своеобразие их тепловых свойств в сравнении с окружающими, своеобразие геодинамических процессов, растительных сообществ и др.

Итогом многоэтапного дешифрирования материалов дистанционного аэрокосмического зондирования на Столбищенском участке является схема результатов дешифрирования палеодолины р. Волги в масштабе 1:24 000, на которой показаны границы бортов палеодолины.

Индикатором этих границ в ландшафте являются озера, формы поверхностного карста, участки повышенной влажности, русла ручьев, долины оврагов, имеющие определенные яркости в видимом, тепловом и радиолокационном диапазонах.

Применение материалов дистанционного зондирования в различных диапазонах волн с использованием выявленных геоиндикаторов погребенной палеодолины Волги на эталонном участке позволяет весьма достоверно определить контур этой долины.

При этом имеются следующие преимущества перед другими геолого-геофизическими методами:

1. На материалах дистанционного зондирования одновременно вся исследуемая территория и границы палеодолины, по геоиндикаторам прослеживается практически непрерывная зона палеодолины. Используя любые другие методы – бурение, ВЭЗ и т.д. – геолого-геофизическая информация получается лишь в отдельных точках, между которыми необходимо проводить интерполяцию. Любая же интерполяция приводит к определенным неточностям. Т.е. обработка материалов аэрокосмического зондирования повышает надежность определения границ выявляемого объекта.

2. Значительное удешевление работ по сравнению с решением той же задачи путем проходки буровых скважин или геофизических исследований.

Используя цифровые данные на технических носителях, задавая пороговые уровни в нескольких диапазонах спектра, на следующем этапе можно осуществить попытку автоматического распознавания контуров палеодолины.





Дата добавления: 2013-12-31; просмотров: 1000; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9173 - | 7249 - или читать все...

Читайте также:

 

34.237.76.91 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.008 сек.