Физиологические проявления действия ауксинов

ПЛАН

Источники

СЛАЙД 38

СЛАЙД 37

СЛАЙД 36

СЛАЙД 35

СЛАЙД 34

Холодостойкие растения: брусника

Теплолюбивые растения: виноград

Влияние газового состава. Для роста растений необходимо присутствие кислорода. Но даже в условиях длительного недостатка кислорода рост продолжается, но с низкой скоростью. Это связано с включением адаптационных механизмов, позволяющих использовать кислород нитратов, воздухоносных тканей и т.д.

Избыток СО2 приводит к увеличению растяжимости клеточных стенок и кратковременному усилению роста (в течение нескольких часов). Влияние СО2 на рост основано на способности снижать рН клеточных стенок и таким образом индуцировать рост клеток. Эффект СО2 не зависит от присутствия кислорода. Именно с эффектом «кислого роста» наряду с затенением может быть связано чрезмерное удлинение нижних междоузлий злаков в загущенных посевах и вследствие этого полегание растений.

Водный режим. Процесс роста клеток растений растяжением осуществляется путем вакуолизации при поступлении в клетки воды. Недостаточное снабжение клеток водой задерживает рост. Корни способны расти только в достаточно влажной почве, почти насыщенной водяным паром. Надземные части растений всегда находятся в более сухом воздухе с влажностью 50-70%. От потери воды ткани наземных органов зашищены кутикулярно-эпидермальным слоем. Поэтому в мезофилле листьев упругость водяного пара не бывает ниже 98-99% относительной влажности. При длительном недостатке воды в тканях фаза растяжения заканчивается быстра, что приводит к укорочению стебля и корня, к уменьшению размеров листьев, к их мелкоклеточности. Недостаток воды до начала и в период стеблевания злаков (который осуществляется за счет роста растяжением) особенно резко снижает урожай.

Минеральное питание. На рост растений благоприятно сказывается высокое содержание в почве минеральных элементов, особенно азота. Но высокие концентрации азота задерживают процессы дифференцировки, в частности закладку цветков. Высокий минеральный фон приводит к разрастанию вегетативных органов и необходим при наращивании зеленой массы кормовых растений. Но чрезмерное удобрение снижает урожай плодов и зерна. В.А.Чесноков разработал метод, по которому лучший урожай огурцов, моркови, клубней картофеля получается при одноразовом или периодическом голодании растений, особенно по азоту.

Таким образом в ходе онтогенеза растения проходят ряд этапов: эмбриональный, ювенильный, зрелости и размножения старости и отмирания. Каждый из этих этапов в свою очередь включает в себя несколько последовательных фаз роста и развития. Закладка органов происходит в апикальных меристемах, формирование тканей начинается с образования инициальных клеток. Рост растений отличается периодичностью. В неблагоприятные периоды растения переходят в состояние вынужденного или глубокого (физиологического) покоя.

1) В.В.Полевой. – Физиология растений /М.: Высшая школа 1989

2) Диагнозы и ключи возрастных состояний луговых растений часть II /М.1983

3) Онтогенетический атлас лекарственных растений. Том IV и V /Й.-Ола, 2004

4) https://foto.mail.ru/bk/god66685/49/91.html

5) https://darina.kiev.ua/health/index10.html

6) https://www.myresidence.ru/landscape/article421.html

1.Терминология: рост, диффенцировка, морфогенез, развитие.

2.Закономерности роста, соотношение процессов роста, морфогенеза и развития.

3.Фитогормоны. Метаболизм. Фенольные ингибиторы.

4.Синтетические регуляторы роста. Внешние факторы.

1.Рост и развитие — неотъемлемые свойства любого живого организма. Это можно сказать интегральные процессы. Растительный организм поглощает воду и питательные вещества, аккумулирует энергию, в нем происходят многочисленные реакции обмена веществ, в результате чего он растет и развивается. Процессы роста и развития тесно взаимосвязаны, так как обычно организм и растет, и развивается. Однако темпы роста и развития могут быть разными, быстрый рост может сопровождаться медленным развитием или быстрое развитие медленным ростом. Так, например, растение хризантемы в начале лета (длинный день) быстро растет, но не зацветает, следовательно, развивается медленно. Подобное происходит с высеянными весной озимыми растениями: они быстро растут, но не переходят к репродукции. Из этих примеров видно, что критерии, определяющие темпы роста и развития, различны. Критерием темпов развития служит переход растений к воспроизведению, к репродукции. Для цветковых растений это закладка цветочных почек, цветение. Критерии темпов роста обычно определяют скоростью нарастания массы, объема, размеров растения. Сказанное мною подчеркивает не тождественность этих понятий и позволяет рассмотреть процессы роста и развития последовательно.

2. Дифференциация клеток на ткани (гистогенез) и органы (морфогенез) осуществляется на основе дифференцированной работы генома, которая идет по заданной программе. В зависимости от концентрации гормональных, питательных веществ, электрических зарядов происходит дерепрессия или репрессия определенных участков генома и, как следствие, биохимическая, а затем анатомо-морфологическая дифференциация. Имеется ряд условий, способствующих этому.

Полярность - это свойственная растениям специфическая дифференциация процессов и структур в пространстве. При этом физиолого-биохимические или анатомо-морфологические различия изменяются в определенном направлении, в результате чего один конец отличается от другого. Явление полярности проявляется как на одной клетке, так и на ряде клеток. Так, меристематическая клетка уже поляризована благодаря своему положению: у нее есть верх и низ. И если деление пройдет перпендикулярно оси полярности, то, несмотря на одинаковое распределение наследственного материала (ДНК), дочерние клетки будут неодинаковыми по физиологическим и структурным особенностям, по факторам наследственности, расположенным в цитоплазме, и по веществам — гормонам, регулирующим активность генома. Полярно образование отдельных органов. Так, у черенков корни образуются всегда на нижнем конце. Полярность проявляется в определенной направленности роста корня и стеб­ля, в определенном направлении передвижения веществ. Она может обуславливаться неравномерным распределением зарядов. Верхушка побега заряжена положительно по отношению к основанию, сердцевина стебля — по отношению к поверхности. Возникновение полярности может быть обусловлено разными причинами — как внешними, так и внутренними. Важно заметить, что поляризация может быть вызвана не только при неравномерном (одностороннем) воздействии того или иного фактора среды (света, температуры, земного притяжения), но и при неравномерном его восприятии. Так, под влиянием света пигменты, его воспринимающие, передвигаются к периферии цитоплазмы. Большое влияние на возникновение полярности имеет взаимодействие клеток. Возникновение полярности под влиянием окружающих клеток получило название «эффекта поля». Окружающие клетки могут оказывать эффект благодаря неравномерному химическому, механическому или электрическому воздействию.

Следующим фактором, имеющим значение в дифференциации клеток, является неравномерное деление. При неэквивалентном цитокинезе (даже неполяризованных клеток) цитоплазматические факторы распределяются неравномерно (ядро делится как обычно), что и вызывает дифференциацию дочерних клеток. Так, при образовании устьиц делению клетки эпидермиса предшествует концентрация цитоплазмы и органелл на одной ее стороне. Затем, после обычного деления ядра, делится сама клетка. При этом образуется одна клетка меньшего, а другая большего размера. Меньшая по размеру клетка дает начало замыкающим клеткам устьиц. Клетки ризодермы также делятся неравномерно. Меньшая клетка, богатая цитоплазмой, белком, РНК, получила название трихобласта. Именно она больше не делится, а образует вырост — корневой волосок. Неэквивалентное деление наблюдается и при образовании ситовидных элементов. При этом из одной материнской клетки образуются две дочерние клетки, из которых одна дифференцируется в элемент ситовидной трубки, а другая в клетку-спутницу.

Существует мнение, что отдельные ткани выделяют особые морфогенетические вещества, причем источником их является, в первую очередь, меристема. Доказательством этого служат исследования Торрея, согласно которым в меристеме корня присутствует стимул, вызывающий дифференциацию проводящей системы. Согласно его данным, одним из таких веществ, вызывающих дифференциацию, является фитогормон ауксин. Взаимовлияние тканей хорошо проявляется в явлениях, получивших название гомо- и гетерогенетической индукции. При гомогенетической индукции определенная ткань вызывает образование себе подобной. Это хорошо проявляется при срастании тканей, а также при культуре изолированных тканей. В последнем случае в тканях каллуса при соприкосновении с кусочком ксилемы возникает ксилема, а при соприкосновении с флоэмой — флоэма. При гетеро­генетической индукции какая-то ткань или орган блокирует образование сходной ткани или органа. Это проявляется при образовании устьиц, которые возникают только на определенных расстояниях друг от друга. Последнее важно для регуляции испарения воды и поступления С02 в листья.

Необходимо также отметить, что для процесса дифференциации большое значение имеют поверхностные свойства клеток, т. е. непосредственное взаимодействие — «слипание» поверхностей. Адгезия обусловлена присутствием на поверхности клеток специфических белков — лектинов, способных к обратимому связыванию с углеводами. Пектины появляются в результате избирательной экспрессии генов на разных стадиях развития клетки. Именно эти соединения обеспечивают «узнавание» и взаимодействие клеток. Так, лектин — углеводные взаимодействия лежат в основе связывания микроорганизмов-азотфиксаторов с определенным видом бобового растения. Кроме того, появились данные, что эти взаимодействия имеют значение в защите организма от болезнетворных микроорганизмов. Согласно современным представлениям, адгезия клеток играет решающую роль в морфогенезе, или образовании определенной формы того или иного органа.

3. Для многоклеточных организмов характерен тип регуляции, который связан с взаимодействием между отдельными клетками, тканями или даже органами. Для осуществления такой координации в организме вырабатываются гормоны. Гормоны растений получили название фитогормонов. Фитогормоны — это вещества, вырабатывающиеся в процессе естественного обмена веществ и оказывающие в ничтожных количествах регуляторное влияние, координирующее физиологические процессы. В этой связи к ним часто применяется термин — природные регуляторы роста. В большинстве случаев, но не всегда фитогормоны образуются в одних клетках и органах, а оказывают влияние на другие. Иначе говоря, гормоны способны к передвижению по растению и их влияние носит дистанционный характер. Большинство физиологических процессов, в первую очередь рост, формообразование и развитие растений, регулируется гормонами. Гормоны играют ведущую роль в адаптации растений к условиям среды. Известны следующие пять групп фитогормонов: ауксины, гиббереллины, цитокинины, абсцизовая кислота, газ этилен. В последнее время к ним относят брассины (брассиностероиды). Условно можно отнести первые три группы—ауксины, гиббереллины и цитокинины и частично брассины — к веществам стимулирующего характера, тогда как абсцизовую кислоту и этилен — к ингибиторам.

Ауксины — это вещества индольной природы. Основным фитогормоном типа ауксина является b-индолилуксусная кислота (ИУК). Открытие ауксинов связано с исследованиями Ч. Дарвина (1860). Дарвин установил, что, если осветить проросток злака с одной стороны, он изгибается к свету. Однако, если на верхушку проростка надеть непроницаемый для света колпачок и после этого поставить в условия одностороннего освещения, изгиба не происходит. Таким образом, органом, воспринимающим одностороннее освещение, является верхушка растения, тогда как сам изгиб происходит в нижней части проростка.

Наиболее ярким проявлением физиологического действия ауксина является его влияние на рост клеток в фазе растяжения. ИУК стимулирует выход протонов в клеточную стенку и увеличивает ее растяжимость. Под влиянием оптимальной концентрации ИУК рост в длину декапитированных отрезков стеблей гороха увеличивается более чем в два раза. Ауксины в некоторых случаях стимулируют деление клеток, например камбия. Под влиянием ауксинов может измениться направление дифференциации клеток.

Открытие гормонов растений гиббереллинов связано с изучением болезни риса. В юго-восточных странах, в частности в Японии, распространена болезнь риса «баканэ», или болезнь дурных побегов. У растений, пораженных этой болезнью, вытянутые бледные побеги. Японские ученые показали, что эта болезнь вызывается выделением гриба Gibberella fujikuroi. Из выделений этого гриба было получено кристаллическое вещество — гиббереллин. В дальнейшем выяснилось, что гиббереллины — широко распространенные среди растений вещества, обладающие высокой физиологической активностью и являющиеся, подобно ауксинам, естественными фитогормонами. В настоящее время известно более 80 веществ, относящихся к группе гиббереллинов и обозначающихся номерами: ГА1 ГА2 и др. Не все гиббереллины обладают физиологической активностью. По химической структуре это производные дитерпенов — дитерпеноиды, состоящие из четырех изопреновых остатков. Наиболее распространенный гиббереллин А3 — гибберелловая кислота (ГК).

Наиболее общим и ярким проявлением физиологического действия гиббереллина является его способность резко усиливать рост стебля у карликовых форм различных растений. Причины карликовости различны. Генетическая карликовость вызвана изменениями на генном уровне и может быть связана с нарушениями в синтезе гиббереллинов. Вместе с тем карликовость может быть обусловлена накоплением ингибиторов. В этом случае внесение гиббереллина лишь нейтрализует их действие. Обычно карликовость выражается в уменьшении длины междоузлий стебля при сохранении их числа. Обработанные гиббереллином карликовые растения выравниваются по высоте с нормальными, однако в последующих поколениях карликовость продолжает сохраняться. Молекулярно-генетические исследования расширили наши представления об особенностях регуляции роста этим фитогормоном. Известно много мутантов, у которых отсутствует этот гормон. Как правило такие гиббереллин-дефектные мутанты — карликовые растения, которые отличаются от нормальных одним геном, который кодирует образование гиббереллинов.

Открытие абсцизовой кислоты (АБК) связано с изучением двух явлений — покоя почек и опадения листьев и плодов. В 1961 г. Аддикот (США) установил, что имеются вещества, накопление которых вызывает образование отделительного слоя и опадение листьев. В это же время Ф. Уоринг (Англия) показал, что при переходе в покоящееся состояние в почках накапливаются вещества, тормозя­щие рост. В дальнейшем вещество, вызывающее опадение, было выделено из коробочек хлопчатника и получило название «абсцизин», от слова abscission — опадение, а из листьев березы — вещество, тормозящее рост, получившее название «дормин», от французского слова dort — спит.

АБК тормозит процессы роста, индуцированные ИУК, цитокинином и гиббереллином. Накопление АБК приводит к снижению фотосинтетического фосфорилирования и интенсивности фотосинтеза. Увеличение содержания АБК тормозит рост пазушных почек при апикальном доминировании, задерживает прорастание семян, влияет на переход в покоящееся состояние семян, почек, клубней. Обычно она накапливается перед наступлением зимних холодов, а ко времени окончания покоя ее содержание уменьшается. Ингибиторное действие АБК на прорастание семян и рост тканей в ряде случаев может сниматься обработкой гиббереллинами или цитокининами.

Этилен — это газ. Химическая формула СН2= СН2. Этилен отнесен к фитогормонам сравнительно недавно. Однако еще в 1911 г. русский ученый Д.Н. Нелюбов установил, что этилен тормозит рост стебля в длину, одновременно вызывая его утолщение и изгиб в горизонтальном направлении (тройная реакция стебля). В последующем было показано, что сочные плоды ряда растений (апельсины, бананы и др.) выделяют этилен, и что он стимулирует созревание плодов. В 1935— 1937 гг. Хичкок и Циммерман в США и Ю.В. Ракитин в СССР провели большое количество исследований, показавших, что этилен — регулятор созревания плодов. В 60-е годы показано, что спектр действия этилена значительно шире и что, подобно АБК, этот фитогормон оказывает в основном тормозящее влияние на процессы роста. Показано, что первоначальным предшественником образования этилена является аминокислота метионин. В образовании этилена участвует ряд ферментов, из которых особое значение имеет аминоциклопропанкарбосинтаза (АЦК-синтаза), катализирующая образование 1-аминоциклопропан-1-карбоновой кислоты (АЦК) — непосредственного предшественника этилена. Активность этого фермента возрастает в процессе созревания плодов, при поранении и, что самое главное, регулируется ауксином. Показано, что высокие концентрации ауксина вызывают синтез этилена. Предполагают, что происходит на уровне индукции генов АЦК-синтазы. Этилен образуется в созревающих плодах, стареющих листьях, в проростках до того, как они выходят на поверхность почвы. В растении этилен определяют с помощью биотестов или газовой хроматографии.

Наиболее яркое проявление действия этилена — это регуляция процессов созревания плодов. Созревание плодов — сложный процесс, включающий увеличение интенсивности дыхания (так называемое климактерическое дыхание), распад сложных соединений на более простые, размягчение тканей (распад пектиновых веществ), изменение цвета и запаха. Плоды в период созревания образуют этилен, который и регулирует все эти процессы. Ингибиторы синтеза этилена задерживают созревание плодов. Этилен способствует увеличению толщины, но уменьшает рост в длину стебля, а также клеток, что связано с изменением ориентации микрофибрилл целлюлозы. Способствует образованию отделительного слоя и опадению листьев и плодов. Образование отделительного слоя связано с появлением ферментов, растворяющих клеточные стенки, нарушением связей между клетками. Этилен ускоряет процессы старения, тормозит рост почек, накапливается в покоящихся органах. Во многих случаях его накопление и действие связано с ауксином. Ауксин в повышенной концентрации вызывает образование этилена и, как следствие, торможение ростовых процессов. Возможно, торможение роста, вызванное высокими концентрациями ауксина, связано с накоплением этилена. Так, показано, что этилен и высокие концентрации ауксина вызывают эпинастию листьев, т. е. изменение угла наклона листа по отношению к стеблю в результате чего листья опускаются. У некоторых растений (ананасы) этилен индуцирует образование цветков. Этилен влияет на пол цветков, вызывая образование женских цветков у однодомных растений (огурец, тыква). При затоплении растений этилен индуцирует образование корней на стебле и формирование аэренхимы — ткани стебля, по которой кислород поступает в корни. Это позволяет растениям выживать в условиях кислородного голодания корней. Кроме того, этилен индуцирует образование на стебле адвентивных корней. Эти корни не выполняют поглощающую функцию, а участвуют в снабжении побегов веществами, необходимыми для нормального функционирования, например цитокининами. Этилен участвует в реакции растений на повреждающие воздействия, в частности на патогенные микроорганизмы (грибы, бактерии, вирусы). Под действием этилена в растении синтезируются белки-ферменты, такие как хитиназа и глюканаза, которые разрушают клеточную стенку патогенов. Есть данные, что этилен индуцирует и синтез ферментов, участвующих в образовании защитных соединений, например фитоалексинов.

Открытие цитокининов связано с обширными исследованиями по выращиванию каллуса, образовавшегося из изолированной ткани сердцевины стебля табака на питательной среде (Ф. Скут и К. Миллер). Было показано, что клетки каллуса в стерильной культуре через определенный промежуток времени прекращают деление. Однако при добавлении к питательной среде производных ДНК, получающихся после ее автоклавирования, деление клеток возобновляется. В 1955 г. было выделено активное начало, вызывающее деление клеток, — 6-фурфурила-минопурин, названное кинетином. 6-фурфуриламинопурин в растениях не встречается. Однако в растениях были найдены близкие химические соединения, регулирующие процесс деления клеток,— цитокинины. Один из цитокининов, выделенный из кукурузы, был назван зеатином. Все известные цитокинины — это производные пуриновых азотистых оснований, а именно аденина, в котором аминогруппа в шестом положении замещена различными радикалами.

Действие цитокининов, как и других фитогормонов, многофункционально. Цитокинины в первую очередь оказывают влияние на деление клеток, хотя в некоторых случаях могут регулировать и их растяжение. Особенно ярко влияние цитокининов на процессы деления проявляется на культуре изолированных тканей. На листьях целого растения показано соответствие активности цитоки­нинов и скорости клеточных делений (А.Т. Мокроносов). Высказывается предположение, что цитокинины регулируют последнюю стадию деления, а именно цитокинез (деление самой клетки). Показано, что цитокинины стимулируют экспрессию специфического циклина и ускоряют переход от фазы g2 к митозу. Кроме того, они активируют рост растяжением изолированных листьев и семядолей у двудомных растений. Цитокинины также оказывают влияние на направление дифференциации клеток и тканей.

4. Внешние условия оказывают на рост как прямое, так и косвенное влияние. Последнее связано с тем, что скорость роста зависит от интенсивности всех остальных физиологических процессов, воздушного и корневого питания, снабжения водой, напряженности процессов обмена веществ и энергии. В этой связи влияние внешних условий может сказаться на интенсивности роста через изменение любого из указанных процессов. При этом далеко не всегда причины того или иного влияния можно с достаточной точностью установить, поскольку в естественной обстановке влияние отдельных факторов тесно взаимосвязано.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: