Физиология гладких мышц

Двигательные единицы.

Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица. Она включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт – нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращение определенной группы мышечных волокон. Двигательные единицы мелких мышц, осуществляющих тонкие движения (мышцы глаза, кисти), содержат небольшое количество мышечных волокон. В крупных их в сотни раз больше.

Все двигательные единицы в зависимости от функциональных особенностей делятся на 3 группы:

I. Медленные неутомляемые. Они образованы «красными» мышечными волокнами, в которых меньше миофибрилл. Скорость сокращения и сила этих волокон относительно небольшая, но они мало утомляемы. Поэтому их относят к тоническим. Регуляция сокращения таких волокон осуществляется небольшим количеством мотонейронов, аксоны которых имеют мало концевых веточек. Пример – камбаловидная мышца.

IIB. Быстро, легко утомляемые. Мышечные волокна содержат много миофибрилл и называются «белыми». Быстро сокращаются и развивают большую силу, но быстро утомляются. Поэтому их называют фазными. Мотонейроны этих двигательных единиц крупные, имеют толстый аксон с многочисленными концевыми веточками. Они генерируют нервные импульсы большой частоты. Например, мышцы глаза.

IIIА. Быстрые, устойчивые к утомлению. Занимают промежуточное положение.

Гладкие мышцы имеются в стенках большинства органов пищеварения, сосудов, выводных протоков различных желез, мочевыводящей системы. Они являются непроизвольными и обеспечивают перистальтику органов пищеварения и мочевыводящей системы, поддержание тонуса сосудов. В отличие от скелетных, гладкие мышцы образованны клетками чаще веретенообразной формы и небольших размеров, не имеющих поперечной исчерченности. Последнее связано с тем, что сократительный аппарат не обладает упорядоченным строением. Миофибриллы состоят из тонких нитей актина, которые идут в различных направлениях и прикрепляются к разным участкам сарколеммы. Миозиновые протофибриллы расположены рядом с актиновыми. Элементы саркоплазматического ретикулума не образуют систему трубочек. Отдельные мышечные клетки соединяются между собой контактами с низким электрическим сопротивлением – нексусами, что обеспечивает распространение возбуждения по всей гладкомышечной структуре. Возбудимость и проводимость гладких мышц ниже, чем скелетных.

Мембранный потенциал составляет 40-60 мВ, так как мембрана гладкомышечных клеток имеет относительно высокую проницаемость для ионов натрия. Причем у многих гладких мышц мембранный потенциал не постоянен. Он периодически уменьшается и вновь возвращается к исходному уровню. Такие колебания называются медленными волнами. Когда вершина медленной волны достигает критического уровня деполяризации, на ней начинают генерировать потенциалы действия, сопровождающиеся сокращением. Медленная волна и потенциал действия проводятся по гладким мышцам со скоростью, всего 5-50 см/сек. Такие гладкие мышцы называются спонтанно активными, т.к. они обладают автоматией. Например, за сет такой активности происходит перистальтика кишечника. Водители ритма кишечной перистальтики расположены в начальных отделах соответствующих кишок.

Генерация потенциала действия на гладкомышечных клетках обусловлена входом в них ионов кальция. Механизмы электромеханического сопряжения также отличаются. Сокращение развивается за счет кальция, входящего в клетку во время потенциала действия. Опосредует связь кальция с укорочением миофибрилл важнейший клеточный белок – кальмобулин.

Кривая сокращения также отличается. Латентный период, период укорочения, а особенно расслабления значительно продолжительнее, чем у скелетных мышц. Сокращение длиться несколько секунд. Гладким мышцам, в отличие от скелетных свойственно явление пластического тонуса – это способность длительное время находится в состоянии сокращения без значительных энергозатрат и утомления. Благодаря этому свойству поддерживается форма внутренних органов и тонус сосудов. Кроме того, гладкомышечные клетки сами являются рецепторами растяжения. При их натяжении начинают генерироваться потенциалы действия, что приводит к сокращению гладкомышечных клеток. Это явление называется миогенным механизмом регуляции сократительной активности.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: