Функции спинного мозга. 3 страница

Гонадотропные гормоны (гонадотропины).

Гонадотропные гормоны – фолликулостимулирующий (ФСГ) и лютеинизирующий (гормон, стимулирующий интерстициальные клетки - ЛГ) продуцируются базофильными клетками передней доли гипофиза.

Физиологические эффекты, вызываемые фолликулостимулирующим и лютеинизирующим гормонами, обусловлены их действием на половые железы самцов и самок – стимуляцией развития пубертатной железы и фолликулов (образованием в них половых гормонов).

Высвобождение ФСГ гипофизом стимулируется действием нейросекрета гипоталамуса. ФСГ–высвобождающий фактор, представляет собой вещество с относительно низкой молекулярной массой (менее 1000). Повышение в крови уровня андрогенов (у мужчин) или эстрогенов (у женщин) тормозит выделение данного фактора, а также секрецию ФСГ аденогипофизом. Эта отрицательная обратная связь регулирует нормальный уровень половых гормонов в организме. Влияние гипоталамуса на выработку ЛГ гипофизом осуществляется посредством нейросекреции ЛГ-высвобождающего фактора.

Нервная система оказывает влияние на выработку этих гормонов путем контроля гипоталамусом выделения ФСГ и ЛГ. Выработка ФСГ и ЛГ зависит от рефлекторных влияний полового акта, а также от различных факторов внешней среды. На выработку гонадотропных гормонов у человека влияют психические переживания. Так, во время второй мировой войны страх, вызванный налетами бомбардировщиков, резко нарушал выделение гонадотропных гормонов и вел к прекращению менструальных циклов. Продуцируемый ацидофильными клетками передней доли гипофиза пролактин, или лютеотропный гормон усиливает выработку молока молочными железами, а также стимулирует развитие желтого тела, он разрушается ферментами пищеварительного тракта, поэтому его необходимо вводить в организм подкожно или внутривенно.

Пролактин уменьшает потребление глюкозы тканями, что вызывает повышение ее количества в крови, т.е. действует в этом отношении подобно соматотропину, однако значительно слабее. Стимуляция секреции пролактина осуществляется рефлекторно центрами гипоталамической области. Рефлекс возникает при раздражении рецепторов сосков молочных желез (во время сосания). Это приводит к возбуждению ядер гипоталамуса, которые влияют на функцию гипофиза гуморальным путем. Однако в отличие от регуляции секреции ФСГ и ЛГ гипоталамус не стимулирует, а тормозит секрецию пролактина, выделяя пролактинтормозящий фактор. Рефлекторная стимуляция секреции пролактина осуществляется путем уменьшения выработки пролактинтормозящего фактора. Между секрецией ФСГ и ЛГ, с одной стороны, и пролактина – с другой, имеются реципрокные отношения. Усиление секреции двух первых гормонов тормозит секрецию последнего и наоборот.

Тиреотропный гормон (тиреотропин).

Выделяемый базофильными клетками передней доли гипофиза тиреотропный гормон (ТТГ) стимулирует функцию щитовидной железы. Механизмы этой стимуляции многообразны. Активируя протеазы, ТТГ повышает распад тироглобулина в щитовидной железе, что приводит к усиленному выделению тироксина и трийодтиронина в кровь. ТТГ способствует накоплению йода в щитовидной железе; кроме того, он повышает активность ее секреторных клеток и увеличивает их число.

Введение ТТГ вызывает разрастание щитовидной железы, а удаление гипофиза ведет у молодых животных к ее недоразвитию, у взрослых же – к ее уменьшению и частичной атрофии.

Тиротропин выделяется в небольших количествах непрерывно. Стимуляция секреции тиротропина осуществляется гипоталамусом, нервные клетки которого продуцируют тиротропинвысвобождающий фактор, стимулирующий образование тиротропина в аденогипофизе. Уровень секреции тиротропина зависит от количества гормонов щитовидной железы в крови. При достаточном количестве последних секреция тиротропина угнетается. Недостаточное содержание в крови гормонов щитовидной железы, наоборот, стимулирует секрецию тиротропина. Таким образом, и здесь функционирует механизм обратной связи.

Адренокортикотропный гормон (адренокортикотропин).

Адренокортикотропные гормоны (АКТГ) разных видов животных имеют различную структуру и отличаются своей активностью.

АКТГ вызывает разрастание пучковой и сетчатой зон коры надпочечников и усиливает синтез их гормонов. Удаление гипофиза не ведет к атрофии клубочковой зоны коры и мозгового вещества надпочечников. Это говорит о том, что действие АКТГ специфично и распространяется только на пучковую и сетчатую зоны коры надпочечников.

Секреция АКТГ гипофизом снижается при воздействии всех чрезвычайных раздражителей, вызывающих в организме состояние напряжения (стресс). Такие раздражители рефлекторно, а также вследствие повышенного выделения адреналина мозговым слоем надпочечников действуют на ядра гипоталамуса, в которых усиливается образование кортикотропинвысвобождающего фактора. Эти вещества вследствие сосудистой связи гипоталамуса и гипофиза достигает клеток передней доли и стимулирует секрецию АКТГ. Последний, действуя на надпочечник, вызывает усиление выработки глюкокортикоидов (способствующих повышению сопротивляемости организма неблагоприятным факторам), а также в некоторой мере и минералокортикоидов.

Промежуточная доля гипофиза.

У человека промежуточная доля гипофиза обособлена от передней доли и сращена с задней. Гормон промежуточной доли – интермедин, или меланоцитостимулирующий гормон. Он выделен в химически чистом виде. Гормон встречается в двух формах, различающихся по числу аминокислотных остатков. Во время беременности и при недостаточности коры надпочечников (в обоих случаях нередко наблюдаются изменения пигментации кожи) количество меланоцитостимулирующего гормона в гипофизе возрастает. По-видимому, интермедин у человека также является регулятором кожной пигментации.

Секреция интермедина промежуточной доли гипофиза регулируется рефлекторно действием света на сетчатку глаза. У млекопитающих и человека интермедин имеет значение в регуляции движений клеток черного пигментного слоя в глазу. При ярком свете клетки пигментного слоя выпускают псевдоподии, благодаря чему избыток световых лучей поглощается пигментом и сетчатка не подвергается интенсивному раздражению.

Задняя доля гипофиза.

Задняя доля гипофиза (нейрогипофиз) состоит из клеток, напоминающих клетки глии – так называемых питуицитов. Эти клетки регулируются нервными волокнами, которые проходят в ножке гипофиза и являются отростками нейронов гипоталамуса.

Гипофункция задней доли является причиной несахарного мочеизнурения (несахарного диабета). При этом наблюдается выделение больших количеств мочи (иногда десятки литров в сутки), не содержащей сахар, и сильная жажда. Подкожное введение препарата задней доли гипофиза таким больным снижает суточное выделение мочи до нормы. При этом установлено поражение задней доли гипофиза.

Из задней доли гипофиза получены два препарата: один резко снижает выделение мочи и повышает артериальное давление, а другой вызывает сокращение мускулатуры матки. Первый назван антидиуретическим гормоном, или вазопрессином, второй – окситоцином.

Механизм антидиуретического действия вазопрессина состоит в усилении обратного всасывания воды стенками собирательных трубочек почек. Вазопрессин вызывает сокращение гладких мышц сосудов (особенно артериол) и ведет к повышению артериального давления. Однако прессорный эффект наблюдается лишь при искусственном введении больших доз гормона; выделяющееся же в норме количество вазопрессина дает лишь антидиуретический эффект и практически не влияет на гладкую мускулатуру сосудов.

Окситоцин стимулирует сокращение гладких мышц матки, особенно в конце беременности. Наличие этого гормона является обязательным условием нормального течения родового акта. При удалении гипофиза у беременных самок роды затрудняются и удлиняются. Окситоцин также влияет на отделение молока.

Регуляция секреции гипофиза.

Большое значение в регуляции функций передней доли гипофиза имеют особенности ее кровоснабжения, а именно то, что кровь, оттекающая от капилляров гипоталамической области, поступает в так называемые портальные сосуды гипофиза и омывает его клетки. В гипоталамической области вокруг этих капилляров существует нервная сеть, состоящая из отростков нервных клеток, формирующих на капиллярах своеобразные нейрокапиллярные синапсы. Через эти образования продукты нейросекреции клеток гипоталамуса поступают в кровь и с ее током переносятся к клеткам передней доли гипофиза, изменяя их функции.

При поступлении к передней доли гипофиза продукты нейросекреции гипоталамуса гипофиз усиливает выделение ряда гормонов. Так, в гипоталамусе образуются и поступают к аденогипофизу вещества, получившие название высвобождающих факторов (релизинг-факторов): кортикотропинвысвобождающий, тиротропинвысвобождающий, фолликулостимулинвысвобождающий, лютеинвысвобождающий, соматотропинвысвобождающий. Они способствуют образованию и выделению АКТГ, гонадотропинов, тиротропина, соматотропина.

В гипоталамусе образуются, кроме того, вещества, угнетающие секрецию аденогипофизом некоторых гормонов. В частности таким веществом является фактор, тормозящий образование пролактина (пролактостатин) и некоторые другие.

Задняя доля гипофиза (нейрогипофиз) имеет прямую нервную связь с ядрами гипоталамуса. Образование гормонов задней доли гипофиза происходит в основном в ядрах гипоталамуса в результате процессов нейросекреции. Вазопрессин секретируется в супраоптическом ядре, окситоцин – в паравентрикулярном ядре гипоталамуса. По аксонам нервных клеток эти гормоны поступают в заднюю долю гипофиза.

Гипоталамус и гипофиз представляют собой единую систему регуляции вегетативных функций организма, осуществляемую как благодаря выделению соответствующих гормонов гипофиза, т.е. гуморальным путем, так и непосредственно через вегетативную нервную систему, высшим центром которой является гипоталамическая область.

Гормоны щитовидной железы.

В ткани щитовидной железы содержится йод, который входит в состав гормонов, образуемых фолликулами этой железы. Характерной особенностью клеток этой железы является их способность поглощать йод, так что его концентрация внутри клеток в 300 раз выше, чем в плазме крови. При недостатке йода, необходимого для синтеза гормонов щитовидной железы, ткань железы разрастается – возникает зоб.

В железе синтезируются йодированные соединения: монойодтирозин и дийодтирозин, который затем димеризуется с образованием тироксина. Они образуют в клетках фолликулов железы комплексное соединение с белком – тиреоглобулин, который может сохраняться в фолликулах в течение нескольких месяцев. При его гидролизе протеазой, вырабатываемой клетками железы, освобождаются активные гормоны – трийодтиронин3) и тетрайодтиронин (тироксин, Т4). Трийодтиронин и тироксин переходят в кровь, где связываются с белками плазмы крови тироксинсвязывающим глобулином (ТСГ), тироксинсвязывающим преальбумином (ТСПА) и альбумином, являющимися переносчиками гормонов. В тканях эти комплексы расщепляются, освобождая тироксин и трийодтиронин.

Содержание в плазме крови тироксина, не связанного с белками, составляет всего около 1% всего количества этого гормона в крови. Однако именно не связанный с белками тироксин оказывает свое физиологическое действие. Связанный же с белками тироксин является резервом, из которого по мере уменьшения содержания в крови свободного тироксина освобождаются новые его активные порции.

Трийодтиронин физиологически более активен, чем тироксин, количество его в плазме крови в 20 раз меньше.

Характерное действие гормонов щитовидной железы – усиление энергетического обмена. Тироксин, трийодтиронин, трийодтироуксусная кислота и некоторые другие йодированные соединения, образуемые щитовидной железой, резко усиливают окислительные процессы. В небольшой мере активизируются окислительные процессы в митохондриях, что ведет к усилению энергетического обмена клетки. Значительно усиливается основной обмен – растет потребление кислорода и выделение углекислоты.

Гормоны щитовидной железы ускоряют развитие организма. Йодсодержащие гормоны щитовидной железы оказывают стимулирующее влияние на центральную нервную систему. Йодсодержащие гормоны щитовидной железы накапливаются в структурах ретикулярной формации ствола мозга в больших количествах, чем в других отделах центральной нервной системы, и, повышая ее тонус, оказывают, таким образом, активизирующее влияние на кору больших полушарий мозга.

Тирокальцитонин. Кроме йодсодержащих гормонов, в щитовидной железе образуется тирокальцитонин, снижающий содержание кальция в крови. Под влиянием тирокальцитонина угнетается функция остеокластов, разрушающих костную ткань, и активируется функция остеобластов, способствующих образованию костной ткани и поглощению ионов кальция из крови. Тирокальцитонин – гормон, сберегающий кальций в организме.

Местом образования тирокальцитонина являются парафолликулярные клетки, расположенные вне железистых фолликулов щитовидной железы и отличающиеся по своему эмбриогенезу. Обнаружены видовые различия тирокальцитонина человека и животных.

Физиология щитовидной железы.

Щитовидная железа состоит из железистых фолликулов и парафолликулярной ткани. Фолликулы наполнены полужидким коллоидом, обладающим высокой гормональной активностью. Стенки фолликулов состоят из железистого эпителия. Железа богато снабжена кровеносными и лимфатическими сосудами.

Недостаточность функции щитовидной железы (гипотиреоз), проявившаяся у человека в детском возрасте, приводит к развитию кретинизма, характеризующегося задержкой роста, нарушением пропорций тела, задержкой полового и интеллектуального развития. Для внешнего облика кретина характерны открытый рот и постоянно высунутый язык, так как язык при этом резко увеличен и не помещается в полости рта, что затрудняет глотание и дыхание.

При недостаточности функции щитовидной железы у взрослого развивается микседема. Основной обмен снижается на 30-40%. Масса тела повышается вследствие увеличения количества тканевой жидкости.

В местностях, где почва (а вместе с тем питьевая вода и пища, как растительная, так и животная) бедна йодом, наблюдаются многочисленные случаи недостаточности функции щитовидной железы со значительным разрастанием ее ткани, образующим так называемый зоб – при этом щитовидная железа гипертрофирована, количество фолликулов в ней увеличено, однако продукция гормонов снижена. Это наблюдается преимущественно в горных районах. Во многих из них зоб является эндемическим заболеванием (эндемии – заболевания, постоянно наблюдающиеся в той или иной местности).

Базедова болезнь – результат гипертиреоза, т.е. избыточной продукции гормонов щитовидной железы и увеличения их содержания в крови до концентраций, вызывающих токсические явления. При этом наблюдается увеличение щитовидной железы (зоб), экзофтальм, увеличение частоты сердечных сокращений, чрезвычайная раздражительность, повышение основного обмена и температуры тела, увеличение потребления пищи и вместе с тем похудение. Сухожильные рефлексы усилены, иногда наблюдается мышечное дрожание. Поэтому данное заболевание называется также тиреотоксикозом.

Физиология паращитовидной железы.

У человека имеются четыре околощитовидные железы, две из которых расположены на задней поверхности щитовидной железы и две – у нижнего полюса, а иногда в ее ткани. Общая масса всех четырех паращитовидных желез у человека составляет всего лишь 100 мг.

Удаление паращитовидных желез приводит к смерти, причиной которой являются судороги дыхательных мышц. Судорожные припадки после удаления околощитовидных желез обусловлены нарушением состояния центральной нервной системы.

При недостаточности внутрисекреторной функции околощитовидных желез у человека (гипопаратиреоз), вследствие падения уровня кальция в крови резко повышается возбудимость центральной нервной системы, и возникают приступы судорог. При скрытой тетании, возникающей при легкой недостаточности околощитовидных желез, судороги мышц лица и рук появляются только при надавливании на нерв, иннервирующий эти мышцы.

У детей с врожденной недостаточностью паращитовидных желез содержание кальция в крови снижено, нарушен рост костей, зубов и волос, наблюдаются длительные сокращения мышечных групп (предплечья, грудной клетки, глотки и др.).

Избыточная функция (гиперпаратиреоз) околощитовидных желез наблюдается довольно редко, например, при опухолях околощитовидных желез. При этом содержание кальция в крови увеличено, а количество неорганического фосфата уменьшено. Развивается остеопороз, т.е. разрушение костной ткани, мышечная слабость, вынуждающего больного постоянно лежать, боли в спине, ногах, руках. Своевременное удаление опухоли восстанавливает нормальное состояние.

Околощитовидные железы продуцируют паратгормон. При недостатке паратгормона понижается, а при избытке повышается содержание кальция в крови. Одновременно в первом случае увеличивается содержание в крови фосфатов и уменьшается их выведение с мочой, а во втором случае понижается количество фосфатов в крови и повышается их выделение с мочой. Паратгормон активирует функцию остеокластов, разрушающих костную ткань.

В организме паратгормон вызывает разрушение костной ткани с выходом из нее ионов кальция (вследствие чего и повышается их концентрация в крови). Паратгормон усиливает всасывание кальция в кишечнике и процессы его реабсорбции в канальцах почек. Все это ведет к значительному нарастанию уровня кальция в крови (вместо нормальных 9-11 мг% до 18 мг% и выше). Одновременно снижается концентрация неорганических фосфатов в крови и увеличивается их выделение с мочой.

Физиология поджелудочной железы.

Гистологическими исследованиями поджелудочной железы установлено, что в ней наряду с секреторным эпителием, выделяющим пищеварительные ферменты, существуют особые группы клеток – белые отросчатые эпидермоциты (островки Лангерганса – по имени открывшего их исследователя). Эти эпидермоциты не имеют выводных протоков и выделяют свой секрет непосредственно в кровь.

Еще в конце XIX в было установлено, что у собак через 4-5 часов после удаления поджелудочной железы начинается выделение сахара с мочой. Резко повышается содержание глюкозы в крови. Потеря сахара с мочой приводит к тому, что животное худеет, пьет много воды, становится прожорливым.

Все эти явления оказались аналогичны тем, которые наблюдаются у человека при сахарном диабете. После пересадки животному поджелудочной железы в какой-либо другой участок тела, например под кожу, проявления сахарного диабета исчезали.

Для сахарного диабета характерно повышение содержания глюкозы в крови (гипергликемия) до 10 ммоль/л (200 мг%) и даже больше, вместо 4,4±1,1 ммоль/л (100-120 мг%) в норме. Это связано с тем, что при диабете поступившая в кровь глюкоза не полностью утилизируется тканями и не превращается в гликоген печени.

Повышение содержания глюкозы в крови, а, следовательно, и в клубочковом фильтре приводит к тому, что эпителий почечных канальцев не реабсорбирует глюкозу полностью, вследствие чего она выделяется с мочой (глюкозурия) – возникает потеря сахара с мочой – сахарное мочеизнурение.

Количество мочи увеличено (полиурия). Причина этого явления заключается в том, что при большом содержании глюкозы в моче почечных канальцев эта нереабсорбированная глюкоза, создавая высокое осмотическое давление мочи, удерживает в ней воду. Последняя недостаточно «всасывается» канальцами, и количество выделяемой почками мочи оказывается увеличенным. Обеднение организма водой вызывает у больных диабетом сильную жажду, что приводит к обильному приему воды (полидипсия). В связи с выведением глюкозы с мочой резко увеличивается расходование белков и жиров в качестве веществ, обеспечивающий энергетический обмен организма. Об усилении процессов сгорания жиров и белков свидетельствует снижение дыхательного коэффициента нередко до 0,7.

В организме накапливаются продукты неполного окисления жиров, к числу которых относятся кетоновые тела: β-оксимасляная и ацетоуксусная кислоты.

В тяжелых случаях интенсивное образование кислых продуктов расщепления жиров и дезаминирование аминокислот в печени вызывают сдвиг активной реакции крови в кислую сторону – ацидоз.

Накопление кетокислот и ацидоз могут вызывать тяжелое, угрожающее смертью состояние – диабетическую кому, которая протекает с потерей сознания, нарушением дыхания и кровообращения. Описанные расстройства связаны со снижением гормональной функции поджелудочной железы.

Гормоны поджелудочной железы.

Белые отросчатые эпидермоциты (островки Лангерганса) состоят из клеток трех типов: А-, В- и хромаффинных главных клеток. Среди них больше всего В-клеток (у собак около 75%); они небольших размеров и имеют зернистую протоплазму.

В-клетки выделяют инсулин. А-клетки островков вырабатывают гормон глюкагон.

Инсулин.

Инсулин резко повышает проницаемость мембраны мышечных и жировых клеток для глюкозы. Вследствие этого скорость перехода глюкозы внутрь этих клеток увеличивается примерно в 20 раз по сравнению со скоростью перехода глюкозы в клетки в среде, не содержащей инсулин.

Ферментативные реакции, приводящие к утилизации глюкозы – фосфорилирование и окисление аа, а также образование гликогена, протекают внутри клетки. Способствуя транспорту глюкозы внутрь клетки, инсулин тем сасмым обеспечивает ее утилизацию.

Увеличение транспорта глюкозы через мембраны мышечных волокон при действии инсулина способствует синтезу гликогена и накоплению его в мышечных волокнах. В клетках жировой ткани инсулин стимулирует образование жира из глюкозы.

Под влиянием инсулина возрастает проницаемость клеточной мембраны и для аминокислот, из которых в клетках синтезируются белки. Инсулин стимулирует синтез информационной РНК и этим также способствует синтезу белков.

Мембраны клеток печени в отличие от мембраны клеток жировой ткани и мышечных волокон свободно проницаемы для глюкозы и в отсутствие инсулина. Предполагают, что этот гормон действует непосредственно на углеводный обмен печеночных клеток, активируя синтез гликогена.

Глюкагон.

Второй гормон поджелудочной железы – глюкагон – выделяется А-клетками белых отросчатых эпидермоцитов. Глюкагон стимулирует внутри клетки переход неактивной фосфорилазы (фермента, принимающего участие в расщеплении гликогена с образованием глюкозы) в активную форму и тем самым усиливает расщепление гликогена (в печени, но не в мышцах), повышая уровень сахара в крови. Одновременно глюкагон стимулирует синтез гликогена в печени из аминокислот. Глюкагон тормозит синтез жирных кислот в печени, но активирует печеночную липазу, способствуя расщеплению жиров. Он стимулирует также расщепление жира в жировой ткани. Глюкагон повышает сократительную функцию миокарда, не влияя на его возбудимость.

Регуляция секреции поджелудочной железы.

Образование инсулина (а также глюкагона) регулируется уровнем глюкозы в крови. Увеличение содержания глюкозы в крови после приема ее больших количеств, а также при гипергликемии, связанной с напряженной физической работой и эмоциями, повышает секрецию инсулина. Наоборот, понижение уровня глюкозы в крови тормозит секрецию инсулина, но повышает секрецию глюкагона. Глюкоза влияет на А- и В-клетки поджелудочной железы непосредственно.

Образование инсулина повышается во время пищеварения и уменьшается натощак. Увеличенная секреция инсулина во время пищеварения обеспечивает усиленное образование в печени и мышцах гликогена из глюкозы, поступающей в это время в кровь из кишечника.

Концентрация инсулина в крови зависит не только от интенсивности образования этого гормона, но и от скорости его разрушения. Инсулин разрушается ферментом инсулиназой, находящейся в печени и скелетных мышцах. Наибольшей активностью обладает инсулиназа печени. При однократном протекании через печень крови может разрушаться до 50% содержащегося в ней инсулина. Инсулин может быть не только разрушен инсулиназой, но и инактивирован присутствующими в крови его антагонистами. Один из них – синальбумин – препятствует действию инсулина на проницаемость клеточных мембран.

Уровень глюкозы в крови, помимо инсулина и глюкагона, регулируется соматотропным гормоном гипофиза, а также гормонами надпочечников.

Физиология надпочечников.

Надпочечники состоят из мозгового и коркового вещества, которое представляет собой разные по структуре и функции железы внутренней секреции, выделяющие резко отличающиеся по своему действию гормоны.

Мозговое вещество надпочечников.

Мозговое вещество надпочечников состоит из хромаффинных клеток. Они окрашиваются двухромовокислым калием в желто-коричневый цвет, что и послужило поводом назвать их хромаффинными.

Хромаффинные клетки встречаются не только в мозговом веществе надпочечников, но и в других участках тела: на аорте, у места разделения сонных артерий, среди клеток симпатических ганглиев малого таза, иногда в толще отдельных ганглиев симпатической цепочки. Все эти клетки относят к так называемой адреналовой системе, так как они вырабатывают адреналин и близкие к нему физиологически активные вещества.

Адреналин и норадреналин.

Гормон мозгового слоя надпочечников – адреналин – представляет собой производное аминокислоты тирозина. Мозговой слой надпочечников секретирует также норадреналин, являющийся непосредственным предшественником адреналина при синтезе его в клетках хромаффинной ткани. Норадреналин представляет собой медиатор, выделяющийся окончаниями симпатических волокон. По химической структуре – это деметилированный адреналин; он оказывает физиологическое действие, близкое к последнему.

Адреналин и норадреналин объединяют под названием «катехоламины». Их называют также симпатомиметическими аминами, так как действие адреналина и норадреналина на органы и ткани сходно с действием симпатических нервов. Симпатомиметические амины разрушаются ферментами моноаминоксидазой и катехол-0-метилтрансферазой.

Адреналин оказывает влияние на многие функции организмов, в том числе на внутриклеточные процессы обмена веществ. Он усиливает расщепление гликогена и уменьшает запас его в мышцах и печени, являясь в этом отношении антагонистом инсулина, который усиливает синтез гликогена.

Под влиянием адреналина в мышцах усиливается гликогенолиз, сопровождающийся гликолизом и окислением пировиноградной и молочной кислот. В печени же из гликогена образуется глюкоза, которая затем переходит в кровь; вследствие этого количество глюкозы в крови увеличивается (адреналиновая гипергликемия). Таким образом, действие адреналина влечет за собой, во-первых, использование гликогенного резерва мышц в качестве источника энергии для их работы, во-вторых, увеличенное поступление из печени в кровь глюкозы, которая также может быть использована мышцами при их активной деятельности.

Адреналин вызывает усиление и учащение сердечных сокращений, улучшает проведение возбуждения в сердце. Особенно резкое положительное хроно- и инотропное действие адреналин оказывает на сердце в тех случаях, когда сердечная мышца ослаблена. Адреналин суживает артериолы кожи, брюшных органов и тех скелетных мышц, которые находятся в покое. Адреналин не суживает сосуды работающих мышц.

Адреналин ослабляет сокращения желудка и тонкого кишечника. Перистальтические и маятникообразные сокращения уменьшаются или совсем прекращаются. Снижается тонус гладких мышц желудка и кишок. Бронхиальная мускулатура при действии адреналина расслабляется, вследствие чего просвет бронхов и бронхиол расширяется. Адреналин вызывает сокращение радиальной мышцы радужной оболочки, в результате чего зрачки расширяются. Введение адреналина повышает работоспособность скелетных мышц (особенно если до этого они были утомлены). Под влиянием адреналина повышается возбудимость рецепторов, в частности сетчатки глаза, слухового и вестибулярного аппарата. Это улучшает восприятие организмом внешних раздражителей.

Таким образом, адреналин вызывает экстренную перестройку функций, направленную на улучшение взаимодействия организма с окружающей средой, повышение работоспособности в чрезвычайных условиях.

Действие норадреналина на функции организма сходно с действием адреналина, но не вполне одинаково. У человека норадреналин повышает периферическое сосудистое сопротивление, а также систолическое и диастолическое давление в большей мере, чем адреналин, который приводит к подъему только систолического давления. Адреналин стимулирует секрецию гормонов передней доли гипофиза, норадреналин же не вызывает подобного эффекта.

Кора надпочечников.

В коре надпочечников различают три зоны: наружную – клубочковую, среднюю – пучковую и внутреннюю – сетчатую. Из коры надпочечников выделено около 50 кортикостероидов, однако только 8 из них являются физиологически активными. Гормоны коры надпочечников делятся на три группы:

1. Минералокортикоиды – альдостерон и дезоксикортикостерон, выделяемые клубочковой зоной и регулирующие минеральный обмен.

2. Глюкокортикоиды – гидрокортизон, кортизон и кортикостерон (последний является одновременно и минералокортикоидом), выделяемые пучковой зоной и влияющие на углеводный, белковый и жировой обмен.

3. Половые гормоны – андроген, эстроген, прогестерон, выделяемые сетчатой зоной.

Минералокортикоиды.

Минералокортикоиды участвуют в регуляции минерального обмена организма и в первую очередь уровня натрия и калия в плазме крови.

Из минералокортикоидов наиболее активен альдостерон (у человека – это единственный представитель минералокортикоидов). В клетках эпителия канальцев почки он активирует синтез ферментов, повышающих энергетическую эффективность натриевого насоса. Вследствие этого увеличивается работоспособность натрия и хлора в канальцах почек, что ведет к повышению содержания натрия в крови, лимфе и тканевой жидкости. Одновременно он снижает реабсорбцию калия в канальцах почек, а это приводит к потере калия и уменьшает его содержание в организме. Подобные изменения возникают в клетках эпителия желудка и кишечника, слюнных и потовых желез. Таким путем альдостерон может предотвратить потерю натрия при сильном потоотделении во время перегревания.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: