Цветные металлы и сплавы

Многие цветные металлы (Cu, Al, Mg, Pb, Sn, Zn, Ti) и их сплавы обладают рядом ценных свойств: хорошей пластичностью, вязкостью, высокой электро- и теплопроводностью, прочностью, низкой плотностью, коррозионной стойкостью и другими достоинствами. Благодаря этим качествам цветные металлы и их сплавы занимают важное место среди конструкционных материалов.

Из цветных металлов в автомобилестроении в чистом виде и в виде сплавов широко используются алюминий, медь, свинец, олово, магний, цинк, титан.

Алюминий и его сплавы

Алюминий – металл серебристо-белого цвета, характеризуется низкой плотностью, высокой электропроводностью, температура плавления 660°С. Механические свойства алюминия невысокие, поэтому в чистом виде как конструкционный материал применяется ограниченно.

Для повышения физико-механических и технологических свойств алюминий легируют различными элементами (Cu, Сr, Mg, Si, Zn, Mn, Ni).

В зависимости от содержания постоянных примесей различают:

    • алюминий особой чистоты марки А999 (0,001 % примесей);
    • алюминий высокой чистоты – А935, А99, А97, А95 (0,005…0,5 % примесей);
    • технический алюминий – А35, А3, А7, А5, А0 (0,15…0,5 % примесей).

Технический алюминий выпускают в виде полуфабрикатов для дальнейшей переработки в изделия. Алюминий высокой чистоты применяют для изготовления фольги, токопроводящих и кабельных изделий.

Сплавы на основе алюминия классифицируются по следующим признакам:

    • по технологии изготовления;
    • по степени упрочнения после термической обработки;
    • по эксплуатационным свойствам.

Деформируемые сплавы. К неупрочняемым термической обработкой относятся сплавы:

    • алюминия с марганцем марки АМц;
    • алюминия с магнием марок АМг; АМгЗ, АМг5В, АМг5П, АМг6.

Эти сплавы обладают высокой пластичностью, коррозионной стойкостью, хорошо штампуются и свариваются, но имеют невысокую прочность. Из них изготовляют бензиновые баки, проволоку, заклепки, а также сварные резервуары для жидкостей и газов, детали вагонов.

В группе деформируемых алюминиевых сплавов, упрочняемых термической обработкой, различают сплавы:

    • нормальной прочности;
    • высокопрочные сплавы;
    • жаропрочные сплавы;
    • сплавы для ковки и штамповки.

Сплавы нормальной прочности. К ним относятся сплавы системы Алюминий + Медь + Магний (дуралюмины), которые маркируются буквой Д. Дюралюмины (Д1, Д16, Д18) характеризуются высокой прочностью, достаточной твердостью и вязкостью. Для упрочнения сплавов применяют закалку с последующим охлаждением в воде. Закаленные дуралюмины подвергаются старению, что способствует увеличению их коррозионной стойкости.

Дуралюмины широко используются в авиастроении: из сплава Д1 изготовляют лопасти винтов, из Д16 – несущие элементы фюзеляжей самолетов, сплав Д18 – один из основных заклепочных материалов.

Высокопрочные сплавы алюминия (В93, В95, В96) относятся к системе Алюминий+Цинк+Магний+Медь. В качестве легирующих добавок используют марганец и хром, которые увеличивают коррозионную стойкость и эффект старения сплава. Для достижения требуемых прочностных свойств, сплавы закаливают с последующим старением. Высокопрочные сплавы по своим прочностным показателям превосходят дюралюмины, однако менее пластичны и более чувствительны к концентраторам напряжений (надрезам). Из этих сплавов изготовляют высоконагруженные наружные конструкции в авиастроении – детали каркасов, шасси и обшивки.

Жаропрочные сплавы алюминия (АК4-1, Д20) имеют сложный химический состав, легированы железом, никелем, медью и другими элементами. Жаропрочность сплавам придает легирование, замедляющее диффузионные процессы.

Детали из жаропрочных сплавов используются после закалки и искусственного старения и могут эксплуатироваться при температуре до 300°С.

Сплавы для ковки и штамповки (АК2, АК4, АК6, АК8) относятся к системе Алюминий+Медь+Магний с добавками кремния. Сплавы применяют после закалки и старения для изготовления средненагруженных деталей сложной формы (АК6) и высоконагруженных штампованных деталей – поршни, лопасти винтов, крыльчатки насосов и др.

Литейные сплавы. Для изготовления деталей методом литья применяют алюминиевые сплавы систем Al-Si, Al-Cu, Al-Mg. Для улучшения механических свойств сплавы легируют титаном, бором, ванадием. Главным достоинством литейных сплавов является высокая жидкотекучесть, небольшая усадка, хорошие механические свойства.

Медь и ее сплавы

Главными достоинствами меди как машиностроительного материала являются высокие тепло- и электропроводность, пластичность, коррозионная стойкость в сочетании с достаточно высокими механическими свойствами. К недостаткам меди относят низкие литейные свойства и плохую обрабатываемость резанием.

Легирование меди осуществляется с целью придания сплаву требуемых механических, технологических, антифрикционных и других свойств. Химические элементы, используемые при легировании, обозначают в марках медных сплавов следующими индексами:

А – алюминий; Вм – вольфрам; Ви – висмут; В – ванадий; Км – кадмий; Гл – галлий; Г – германий; Ж – железо; Зл – золото; К – кобальт; Кр – кремний; Мг – магний; Мц – марганец; М – медь; Мш – мышьяк; Н – никель; О – олово; С – свинец; Сн – селен; Ср – серебро; Су – сурьма; Ти – титан; Ф – фосфор; Ц – цинк.

Медные сплавы классифицируют по следующим признакам:

по химическому составу на:

    • латуни;
    • бронзы;
    • медноникелевые сплавы;

по технологическому назначению на:

    • деформируемые;
    • литейные;

по изменению прочности после термической обработки на:

    • упрочняемые;
    • неупрочняемые.

Латуни – сплавы меди, в которых главным легирующим элементом является цинк.

В зависимости от содержания легирующих компонентов различают:

    • простые (двойные) латуни;
    • многокомпонентные (легированные) латуни.

Простые латуни маркируют буквой «Л» и цифрами, показывающими среднее содержание меди в сплаве.
Например, сплав Л90 – латунь, содержащая 90 % меди, остальное – цинк.

В марках легированных латуней группы букв и цифр, стоящих после них, обозначают легирующие элементы и их содержание в процентах.
Например, сплав ЛАНКМц75-2-2,5-0,5-0,5 – латунь алюминиевоникелькремнистомарганцевая, содержащая 75 % меди, 2 % алюминия, 2,5 % никеля, 0,5 % кремния, 0,5 % марганца, остальное – цинк.

В зависимости от основного легирующего элемента различают алюминиевые, кремнистые, марганцевые, никелевые, оловянистые, свинцовые и другие латуни.

Бронзы – это сплавы меди с оловом и другими элементами (алюминий, марганец, кремний, свинец, бериллий).
В зависимости от содержания основных компонентов, бронзы делятся на:

    • оловянные, главным легирующим элементом которых является олово;
    • безоловянные (специальные), не содержащие олова.

Бронзы маркируют буквами «Бр» и буквенные индексы элементов, входящих в состав. Затем следуют цифры, обозначающие среднее содержание элементов в процентах (цифру, обозначающую содержание меди в бронзе, не ставят).
Например, сплав марки БрОЦС5-5-5 означает, что бронза содержит олова, свинца и цинка по 5 %, остальное – медь (85 %).

В зависимости от технологии переработки оловянные и специальные бронзы подразделяют на:

    • деформируемые;
    • литейные;
    • специальные.

Деформируемые оловянные бронзы содержат до 8 % олова. Эти бронзы используют для изготовления пружин, мембран и других деформируемых деталей. Литейные бронзы содержат свыше 6 % олова, обладают высокими антифрикционными свойствами и достаточной прочностью; их используют для изготовления ответственных узлов трения (вкладыши подшипников скольжения).

Специальные бронзы включают в свой состав алюминий, никель, кремний, железо, бериллий, хром, свинец и другие элементы. В большинстве случаев название бронзы определяется основным легирующим компонентом.





Титан и его сплавы

Титановые сплавы классифицируют по:

    • технологическому назначению на литейные и деформируемые;
    • механическим свойствам – низкой (до 700 МПа), средней (700…1000 МПа) и высокой (более 1000 МПа) прочности;
    • эксплуатационным характеристикам – жаропрочные, химически стойкие и др.;
    • отношению к термической обработке – упрочняемые и неупрочняемые;
    • структуре (α-, α+β- и β-сплавы).

Деформируемые титановые сплавы по механической прочности выпускаются под марками:

    • низкой прочности – ВТ1;
    • средней прочности – ВТ3, ВТ4, ВТ5;
    • высокой прочности ВТ6, ВТ14, ВТ15 (после закалки и старения).

Для литья применяются сплавы, аналогичные по составу деформируемым сплавам (ВТ5Л, ВТ14Л), а также специальные литейные сплавы.

Магний и его сплавы

Главным достоинством магния как машиностроительного материала являются низкая плотность, технологичность. Однако его коррозионная стойкость во влажных средах, кислотах, растворах солей крайне низка. Чистый магний практически не используют в качестве конструкционного материала из-за его недостаточной коррозионной стойкости. Он применяется в качестве легирующей добавки к сталям и чугунам и в ракетной технике при создании твердых топлив.

Эксплуатационные свойства магния улучшают легированием марганцем, алюминием, цинком и другими элементами. Легирование способствует повышению коррозионной стойкости (Zr, Mn), прочности (Al, Zn, Mn, Zr), жаропрочности (Th) магниевых сплавов, снижению окисляемости их при плавке, литье и термообработке.

Сплавы на основе магния классифицируют по:

    • механическим свойствам – невысокой, средней прочности; высокопрочные, жаропрочные;
    • технологии переработки – литейные и деформируемые;
    • отношению к термической обработке – упрочняемые и неупрочняемые термической обработкой.

Маркировка магниевых сплавов состоит из буквы, обозначающей соответственно сплав (М), и буквы, указывающей способ технологии переработки (А – для деформируемых, Л – для литейных), а также цифры, обозначающей порядковый номер сплава.

Деформируемые магниевые сплавы MA1, MA2, МА3, MA8 применяют для изготовления полуфабрикатов – прутков, труб, полос и листов, а также для штамповок и поковок.

Литейные магниевые сплавы МЛ1, МЛ2, МЛ3, МЛ4, МЛ5, МЛ6 нашли широкое применение для производства фасонных отливок. Некоторые сплавы МЛ применяют для изготовления высоконагруженных деталей в авиационной и автомобильной промышленности: картеры, корпуса приборов, колесные диски, фермы шасси самолетов.

Ввиду низкой коррозионной стойкости магниевых сплавов изделия и детали из них подвергают оксидированию с последующим нанесением лакокрасочных покрытий.

Баббиты и припои

Для изготовления деталей, эксплуатируемых в условиях трения скольжения, используют сплавы, характеризующиеся низким коэффициентом трения, прирабатываемостью, износостойкостью, малой склонностью к заеданию.

К группе антифрикционных материалов относят сплавы на основе олова, свинца и цинка.

Баббиты – антифрикционные материалы на основе олова и свинца.

В состав баббитов вводятся легирующие элементы, придающие им специфические свойства: медь увеличивает твердость и ударную вязкость; никель – вязкость, твердость, износостойкость; кадмий – прочность и коррозионную стойкость; сурьма – прочность сплава.

Баббиты применяют для заливки вкладышей подшипников скольжения, работающих при больших окружных скоростях и при переменных и ударных нагрузках.

По химическому составу баббиты классифицируют на группы:

    • оловянные (Б83, Б88),
    • оловянно-свинцовые (БС6, Б16);
    • свинцовые (БК2, БКА).

Лучшими антифрикционными свойствами обладают оловянные баббиты.

Баббиты на основе свинца имеют несколько худшие антифрикционные свойства, чем оловянные, но они дешевле и менее дефицитны. Свинцовые баббиты применяют в подшипниках, работающих в легких условиях.

В конструктивных элементах подвижного состава железных дорог используют подшипники скольжения из кальциевых баббитов.

В марках баббитов цифра показывает содержание олова. Например, баббит БС6 содержит по 6 % олова и сурьмы, остальное – свинец.

Антифрикционные цинковые ставы (ЦВМ10-5, ЦАМ9-1,5) используют для изготовления малонагруженных подшипников скольжения. Такие подшипники успешно заменяют бронзовые при температурах эксплуатации, не превышающих 120 °С.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: