Диффузия в гелях и студнях

Сетчатая структура разбавленных гелей и студней, в которых содержание воды достигает 95-99%, позволяет растворенным в воде электролитам и другим низкомолекулярным соединениям диффундировать в них приблизительно с такой же скоростью, как и в воде или другой дисперсионной среде. Если диффузия не сопровождается какими-либо побочными явлениями (химическим взаимодействием диффундирующего вещества со студне- и гелеобразователем, адсорбционными и другими процессами), скорость диффузии подчиняется закону Фика.

Если диффузия осложняется одновременно протекающими адсорбционными процессами и химическими реакциями между частицами геля или студня с диффундирующим веществом, то закон Фика здесь уже не приложим - вместо постепенного перехода концентраций наблюдается резкий скачок. Так, например, когда диффундирует в студень желатина соляная кислота, образуется соль - хлористый желатин. Глубину проникновения кислоты в студень легко обнаружить, т. к. резко изменяется светопоглощающая способность полученного соединения.

На диффузию в гелях и студнях влияет ряд факторов, из которых наибольшее значение имеют структура и концентрация геля и студня, а также степень дисперсности и природа частиц диффундирующего вещества.

Зависимость скорости диффузии от концентрации системы связана с тем, что при увеличении ее концентрации увеличивается и плотность структурной сетки, уменьшаются размеры ячеек, заполненных дисперсионной средой, следовательно, затрудняется проникновение через гель или студень диффундирующих частиц.

Размеры частиц диффундирующих веществ оказывает большое влияние на скорость их диффузии в студне. Чем выше степень дисперсности диффундирующих частиц, тем легче проникают они через петли структурной сетки, тем выше коэффициент диффузии.

Влияние природы диффундирующего вещества на скорость диффузии связано с возможностью адсорбционных процессов и химических реакций. Если на поверхности структурной сетки адсорбируются частицы диффундирующего вещества, то скорость диффузии уменьшается как в результате уменьшения концентрации раствора, так и в результате увеличения его плотности.

 

Периодические реакции в гелях и студнях

В гелях и студнях могут протекать разнообразные химические реакции. Но из-за того, что в студнях и гелях отсутствуют перемешивание и конвекционные токи, реакции в них имеют специфический характер. В растворах есть полная возможность быстро привести реагирующие вещества в соприкосновение, что обеспечивает высокую скорость реакции. В гелях и студнях реагирующие вещества соприкасаются только в результате медленно протекающего процесса диффузии, поэтому химические реакции в студнях идут с небольшой скоростью, причем в соседних участках студня могут возникнуть независимо одна от другой различные реакции.

Характер реакции в гелях и студнях во многом зависит от растворимости вновь получаемого вещества. Если продукт реакции растворим, то диффузия идет в обоих направлениях. Например, когда диффундирует аммиак в содержащий сернокислую медь студень агара, он переходит из раствора в студень, сернокислая медь - из студня в раствор, а образующаяся комплексная соль - в обоих направлениях.

Если в результате реакции получается нерастворимое вещество, то образование осадка возможно в растворе, на поверхности или внутри геля. Осадки в них появляются обычно не по всему объему, а слоями или в виде колец, отделенных друг от друга совершенно прозрачными промежутками. Эти реакции получили название периодических. Слоистое отложение нерастворимых осадков в гелях было описано впервые Лизегангом (1896 г.) поэтому обычно называется его именем (кольца Лизеганга).

Периодическими реакциями объясняют возникновение слоистой узорчатости многих минералов, полосатость различных органов растений и животных, слоистость в строении «камней» в почках и печени.

Применение

Гелеобразование - одно из важных и интересных свойств дисперсных систем с жидкой дисперсионной средой. Гели широко используются для производства разнообразных косметических, лекарственных препаратов и продукции бытовой химии, а также для лабораторных исследований методом электрофореза и др. Гелями могут заполняться анатомические имплантаты, применяемые в пластической хирургии. Твердые гели (алюмогель, силикагель) широко применяются как адсорбенты.

Студнеобразование и студни находят широкое применение в производстве вискозного, ацетатного и медноаммиачного шелка, различных типов искусственной кожи, резиновых изделий из синтетических латексов и растворов каучука, плащевых материалов из пластифицированных полимеризационных пластиков (поливинилхлорида, поливинилацетата и др.), в изготовлении и применении растительных и животных клеев, в отделке кожи, тканей и т. д.

Не менее важны студни в производстве продовольственных товаров. Хлеб, мясо, различные сорта сыра, творог, простокваша, мармелад, джем, желе, студень, кисель - типичные студни.

Протоплазма клеток, хрусталик глаза представляют собой студни. Даже кости имеют некоторую упругость и эластичность благодаря входящему в них студню-оссеину. Кости становятся к старости более хрупкими из-за того, что в них увеличивается содержание твердых минеральных веществ. Маленькие дети часто падают, не причиняя себе особого вреда, потому что кости их представляют собой студни, не успевшие достаточно отвердеть от отложения минеральных солей; падение же в пожилом возрасте часто приводит к перелому костей.

Заключение

В последнее время большое внимание уделяют студнеобразным полимерным водным системам (гидрогели), способным к интенсивному набуханию в десятки и сотни раз и коллапсу под действием электролитов, при изменении температуры и при наложении электрических полей. Примером таких систем служат слабосшитые студни, получаемые на основе сополимеров акриловой кислоты и акриламида. Они используются, в частности, для создания мембран с регулируемой проницаемостью, депо лекарственных веществ, в качестве сорбентов, а также как модели при анализе биологических процессов.

 

Список литературы

 

1. Фролов Ю.Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы. - М.: Химия. - 1988. - 464 с.

2. Фридрихсберг Д.А. Курс коллоидной химии. - СПб.: Химия. - 1995. - 400 с.

3. Воюцкий С.С. Курс коллоидной химии. - М.: Химия. - 1964. - 574 с.

4. Щукин Е.Д., Перцов А.В., Амелина Е.А. Коллоидная химия. -
М.: Высш. шк. - 1992. - 414 с.
5. Кузнецов В.В., Усть-Качкинцев В.Ф. Физическая и коллоидная химия. - М.: Высш. шк. - 1976. - 277 с.

 




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: