Краткие сведения по подготовке к лабораторной работе

 

 

Полевые транзисторы - это управляемые элементы, особенностью которых является практически нулевая мощность управления в статическом состоянии. Это означает, что в отличие от биполярных транзисторов ток управления полевых транзисторов мал, и можно считать, что они управляются напряжением (электрическим полем) - отсюда название “полевые”. Технология полевых транзисторов обеспечивает значительно большую плотность элементов в 1 мм3, что позволяет создавать микросхемы огромной функциональной сложности (однокристальные ЭВМ).

На полевых транзисторах выполняются цифровые устройства, практически не потребляющие энергии в статическом состоянии, то есть схемы с малым потреблением.

На полевых транзисторах, в силу их особенностей, удобно строить ключи переменного тока, в том числе и прецизионные аналоговые коммутаторы.

Мощные полевые транзисторы обладают значительно меньшим сопротивлением в открытом состоянии при работе в ключевом режиме, что обеспечивает более высокие значения КПД преобразователей энергии.

Кроме того, в полевых транзисторах отсутствует эффект диффузионной емкости и связанные с ним ограничения быстродействия, обусловленные эффектом насыщения.

К сожалению, крутизна управления у полевых транзисторов существенно меньше, чем у биполярных (особенно у маломощных приборов), то есть для переключения полевого транзистора требуются большие перепады управляющего напряжения. Это обстоятельство делает быстродействие цифровых ключей на полевых транзисторах существенно меньшим по сравнению с ключами на биполярных транзисторах.

Все это приводит специалистов к необходимости творческих решений проблемы приоритетов между полевыми и биполярными транзисторами в каждом конкретном случае.

По физике работы различают полевые транзисторы с управляемым р-п-переходом и полевые транзисторы с изолированным затвором.

В связи с особенностями обращения и монтажа ПТ с изолированным затвором в лабораторной работе использованы транзисторы с управляемым p-n-переходом и каналом n-типа.

Управление сопротивлением канала, а значит и током стока, осуществляется запирающим p-n-переход напряжением UЗИ. Когда ½UЗИ½ увеличивается, увеличивается и ширина обедненной области p-n-перехода, уменьшающей ширину проводящего канала. При этом сопротивление увеличивается, а ток стока уменьшается.

На рисунке 1 приведены ВАХ такого ПТ: слева – проходная (сток-затворная) , справа – выходная (стоковая) . Выбрав на ВАХ транзистора рабочую точку, можно определить основные дифференциальные параметры ПТ: крутизну   и дифференциальное сопротивление канала .

 

 

Рисунок 1

 

Рисунок 2

Характерной особенностью полевых транзисторов является практически линейная характеристика выходной ВАХ при небольших значениях Uси, когда проводящий канал представляет практически линейно - управляемое сопротивление. Это свойство широко используется при построении линейных регуляторов сигнала (рисунок 2).

Использование полевого транзистора с управляющим р-n-переходом в качестве ключа - аналогового коммутатора - предусматривает меры, исключающие открывание управляющего перехода (рисунок 3). Нормальная коммутация обеспечивается при условии

½Uу½>½Uс½.

Отсекающий диод при подаче запирающего значения Uу запирается, обеспечивая нулевое значение напряжения затвор-исток.

 

 

Рисунок 3                                                     Рисунок 4

 

В усилительном режиме при увеличении Uси за счет взаимодействия двух напряжений (Uзи, Uси), каждое из которых является для р-п-перехода запирающим, выходные ВАХ приобретают более горизонтальный характер, когда из-за слабой зависимости тока от напряжения прибор обладает относительно большим дифференциальным сопротивлением. Полевой транзистор в этом режиме широко используется в виде задатчика тока для запитки неизменным током различных цепей, в том числе и стабилитронов при создании высокостабильных опорных источников (рисунок 4).

 

 




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: