Биологическая очистка основана на жизнедеятельности микроорганизмов, которые способствуют окислению или восстановлению органических веществ, находящихся в сточных водах в виде тонких суспензий, коллоидов, в растворе и являются для микроорганизмов источником питания, в результате чего и происходит очистка сточных вод от загрязнения. Очистные сооружения биологической очистки можно разделить на два основных типа:
сооружения, в которых очистка происходит в условиях, близких к естественным;
сооружения, в которых очистка происходит в искусственно созданных условиях.
К первому типу относятся сооружения, в которых происходит фильтрование очищаемых сточных вод через почву (поля орошения и поля фильтрации) и сооружения, представляющие собой водоемы (биологические пруды) с проточной водой. В таких сооружениях дыхание микроорганизмов кислородом происходит за счет непосредственного поглощения его из воздуха. В сооружениях второго типа микроорганизмы дышат кислородом главным образом за счет диффундирования его через поверхность воды (реаэрация) или за счет механической аэрации. В искусственных условиях биологическую очистку применяют в аэротенках, биофильтрах и аэрофильтрах. В этих условиях процесс очистки происходит более интенсивно, так как создаются лучшие условия для развития активной жизнедеятельности микроорганизмов.
2.1 Расчет аэротенков
Аэротенк для очистки сточных вод представляет собой прямоугольный резервуар для биологической очистки сточных вод с аэрацией воздухом, в котором медленно движется смесь очищаемой сточной воды и активного ила.
Активный ил - колония микроорганизмов.(коловратки, амебы..)
Аэротенки - смесители без регенераторов. Сооружения этого типа целесообразно применять для очистки производственных сточных вод при относительно небольших колебаниях их состава и присутствии в воде преимущественно растворенных органических веществ, например на второй ступени биологической очистки сточных вод и системы канализации нефтеперерабатывающих заводов.
Аэротенки-смесители без регенератора.
Период аэрации tatm,ч, в аэротенках, работающих по принципу смесителей, следует определить по формуле:

где Len — БПКполн поступающей в аэротенк сточной воды (с учетом снижения БПК при первичном отстаивании), мг/л;
Len =220,44 мг/л
Lex — БПКполн очищенной воды, мг/л;
Lex =12 мг/л
ai — доза ила, г/л, определяемая технико-экономическим расчетом с учетом работы вторичных отстойников;
ai =3 г/л
s — зольность ила, принимаемая по табл. 40;
s =0,3
r — удельная скорость окисления, мг БПКполн на 1 г беззольного вещества ила в 1 ч, определяемая по формуле

здесь rmax — максимальная скорость окисления, мг/(г×ч), принимаемая по табл. 40;
rmax = 85 мг/(г×ч),
CO — концентрация растворенного кислорода, мг/л;
CO =2 мг/л
Kl — константа, характеризующая свойства органических загрязняющих веществ, таблица 40, мг БПКполн/л,
Kl =33 мг БПКполн/л
КО — константа, характеризующая влияние кислорода, мг О2/л, и
КО =0,625 мг О2/л
j — коэффициент ингибирования продуктами распада активного ила, таблица 40, л/г, j =0,07
=23,7 мг/г×ч
ч.
Объем аэротенков
Wat = q* tatm = 175,5×4 = 706,8 м3
Глубину аэротенка принимаем h=4 м,отсюда площадь аэротенка S равна
S=706,8 /4=176,7 м2, отсюда длина аэротенка принимается равной 15 м.
Внутренняя часть аэротенка делится на коридоры. Размеры коридора принимаются из условия отношения ширины коридора к рабочей глубине 2:1. Глубина равна 4 м, отсюда следует что ширина коридора равна 8 м. Ширина аэротенка 176,7/15= 11,78. Следовательно количество коридоров 11,78/4=3.
Таблица 3. Размеры аэротенка
| Глубина, м | Ширина, м | Длина, м |
| 4 | 11,78 | 15 |
Нагрузку на ил qi, мг БПКполн на 1 г беззольного вещества ила в сутки, надлежит рассчитывать по формуле


Степень рециркуляции активного ила Ri, в аэротенках следует рассчитывать по формуле

где ai — доза ила в аэротенке, г/л;
Ji — иловый индекс, см3/г.
Величину илового индекса необходимо определять экспериментально при разбавлении иловой смеси до 1 г/л в зависимости от нагрузки на ил. Для городских и основных видов производственных сточных вод допускается определять величину Ji по табл. 41. Ji= 120,4 см3/г
Степень рециркуляции равна:

Рециркуляцию активного ила следует осуществлять насосами.
Аэраторы в аэротенках допускается применять:
· мелкопузырчатые — пористые керамические и пластмассовые материалы (фильтросные пластины, трубы, диффузоры) и синтетические ткани;
· среднепузырчатые — щелевые и дырчатые трубы;
· крупнопузырчатые — трубы с открытым концом;
· механические и пневмомеханические
Используем мелкопузырчатые аэраторы, так как они при наших условия будут более эффективными.
Удельный расход воздуха qair, м3/м3 очищаемой воды, при пневматической системе аэрации определяем по формуле

где qO — удельный расход кислорода воздуха, мг на 1 мг снятой БПКполн, принимаемый при очистке до БПКполн 15—20 мг/л — 1,1
K 1 — коэффициент, учитывающий тип аэратора и принимаемый для мелкопузырчатой аэрации в зависимости от соотношения площадей аэрируемой зоны и аэротенка faz /fat по табл. 42, K 1=0,5,

Площадь аэратора=0,5×176,7 =88,35 м2
K 2 — коэффициент, зависимый от глубины погружения аэраторов ha и принимаемый по табл. 43;
ha = 3;м K 2= 2,08; Ja,min, м3/(м2×ч)= 4
K T — коэффициент, учитывающий температуру сточных вод, который следует определять по формуле:

здесь Tw — среднемесячная температура воды за летний период, °С;
Tw =15°С

K 3 — коэффициент качества воды, принимаемый для городских сточных вод 0,85;
Ca — растворимость кислорода воздуха в воде, мг/л, определяемая по формуле

здесь CT — растворимость кислорода в воде в зависимости от температуры и атмосферного давления, принимаемая по справочным данным; CT =10

CO — средняя концентрация кислорода в аэротенке, мг/л; в первом приближении СО допускается принимать 2 мг/л
м3/м3 очищаемой воды
Интенсивность аэрации Ja, м3/(м2×ч) определяем по формуле

где Hat — рабочая глубина аэротенка, м;
tat — период аэрации, ч.

Если вычисленная интенсивность аэрации свыше Ja,max для принятого значения K 1, необходимо увеличить площадь аэрируемой зоны; если менее Ja,min для принятого значения K 2 — следует увеличить расход воздуха, приняв Ja,min по табл. 43.
В нашем случае Ja,max =50 >29,1; Ja,min = 29,1 <42,4 что не противоречит данному условию, значит расчеты проведены правильно.
Прирост активного ила P i мг/л, в аэротенках определяем по формуле:
Pi= 0,8×Ccdr+Kg×Lпост =0,8×136,74+0,3× 220,44 = 175,5(мг/л)
где Ссdr — концентрация взвешенных веществ в сточной воде, поступающей в аэротенк=136,74 мг/л;
Kg — коэффициент прироста; для городских и близких к ним по составу производственных сточных вод Kg = 0,3;
Lпост -БПКполн поступающей в аэротенк сточной воды=220,44 мг/л.
Аэротенки-смесители с регенераторами

Рис.6 Схема аэротенка смесителя.
1 - регенератор; 2 - аэрационное отделение, 3-распределительные каналы активного ила; 4 - распределительные каналы отстоенной воды, 5-впуск отстоенной воды в аэрационное отделение; 6-сборный канал аэрируемой жидкости; 7 - входные отверстия активного ила, S - подводящий канал от первичных отстойников; 9 - сборный канал «сырой» воды; J0 - верхний канал активного ила; 11 - сборный канал аэрируемой жидкости; 12 - отводящий канал
Технологическая суть такой модификации заключается в том, что после извлечения загрязнений из сточной воды в собственно аэротенках активный ил с накопленными в нем загрязнениями отделяется от очищенной воды и подается не в аэротенк, а в специальное аэрационное сооружение, называемое регенератором, в котором активный ил аэрируется в течение определенного времени без сточной жидкости. В регенераторе ил освобождается от накопленных им в аэротенке загрязнений и восстанавливает свою метаболическую активность. Регенерированный ил направляется затем из регенератора в собственно аэротенк для нового контакта с очищаемой жидкостью и повторения цикла изъятия из нее загрязнений. В конструктивном отношении регенераторы ничем не отличаются от собственно аэротенков и могут устраиваться в виде как отдельно стоящих сооружений, так и емкостей, выделяемых в объеме аэротенков. В собственно аэротенке обеспечивается контакт активного ила с загрязнениями такой длительности, которой достаточно только для изъятия загрязнений из очищенной воды, составляющей примерно 1,5-2,5 ч аэрации в зависимости от характера загрязнений сточных вод и условий реализации процесса. Режим аэрации здесь должен быть направлен на создание условий, наиболее благоприятных для доступа активного ила к загрязнениям, т.е. постоянного и эффективное перемешивания и аэрации иловой смеси. Концентрация растворенного в жидкости кислорода поддерживается в пределах 0,5-2,0 мг/л. Скорость же потребления кислорода здесь значительно более высокая, чем в регенераторе, поскольку в собственно аэротенке протекают более быстрые процессы первичной трансформации загрязнений при их изъятии из очищенной воды. Поэтому интенсивность аэрации здесь должна быть также существенно выше, чем в регенераторах. Длительность пребывания ила в регенераторе значительно больше длительности аэрации в собственно аэротенке.
Для обеспечения 50% регенерации можно принять под регенератор либо 2 коридора 4 коридорных аэротенков, либо 1 коридор 2 коридорных аэротенков. Поскольку типовые аэротенки разработаны в виде 2,3,4- коридорных, то в них можно обеспечить 25, 33, 50, 66, 75% регенерации, выделяя от 1 до 3 коридоров аэротенка под регенерацию. В принципе, можно обеспечить любой процент регенерации, выделяя под регенераторы соответствующий объем аэротенков.
При проектировании аэротенков с регенераторами продолжительность окисления органических загрязняющих веществ t0, ч, надлежит определять по формуле:

Len - БПКполн поступающей в аэротенк сточной воды: 220,44 мг/л;
Lex- БПКполн очищенной воды: 20 мг/л;
S - зольность ила: 0,3;
ai — доза ила в аэротенке: 3 г/л;
r - удельная скорость окисления для аэротенков — смесителей и вытеснителей, определяемая по формуле (49) при дозе ила ar.
= 23,7 мг/(г×ч).
По формуле (52) СНиП 2.04.03-85 определяем коэффициент рециркуляции

ar — доза ила в регенераторе, г/л, определяемая по формуле

= 14 ч.
Продолжительность обработки воды в аэротенке tat, ч определяем по формуле

= 2
Продолжительность регенерации tr, ч,
= 14 - 2= 12 ч.
Вычисляем вместимость аэротенка Wat, м3

=547,56 м3
где qw — расчетный расход сточных вод, м3/ч.
Вместимость регенераторов Wr, м3
=294,84м3
Для аэротенков и регенераторов надлежит принимать:
число секций — не менее двух;
рабочую глубину — 3—6 м, свыше — при обосновании;
отношение ширины коридора к рабочей глубине — от 1:1 до 2:1. Глубина равна 4 м, отсюда следует, что ширина коридора равна 8 м.
Глубину аэротенка принимаем h=4 м, отсюда площадь аэротенка S равна
S=547,56 /4=136,89 м2
Принимаем длину аэротенка 15 м, отсюда ширина аэротенка равна
136,89 /15 =9,126 м.
Рассчитываем количество коридоров 9,126/4=2 шт.
Прирост активного ила Pi, мг/л, в аэротенках надлежит определять по формуле (60) СНиП 2.04.03-85

Pi= 0,8×136,74+0,3× 220,44 = 175,5(мг/л)
Удельный расход воздуха qair, м3/м3 очищаемой воды, при пневматической системе аэрации определяем по формуле

где qO — удельный расход кислорода воздуха, мг на 1 мг снятой БПКполн, принимаемый при очистке до БПКполн 15—20 мг/л — 1,1
K 1 — коэффициент, учитывающий тип аэратора и принимаемый для мелкопузырчатой аэрации в зависимости от соотношения площадей аэрируемой зоны и аэротенка faz /fat по табл. 42, K 1=0,75,

Площадь аэратора=0,75×136,89 =102,7 м2
K 2 — коэффициент, зависимый от глубины погружения аэраторов ha и принимаемый по табл. 43;
h a = 3;м K 2= 2,08; Ja,min, м3/(м2×ч)= 4
K T — коэффициент, учитывающий температуру сточных вод, который следует определять по формуле:

здесь Tw — среднемесячная температура воды за летний период, °С;
Tw =15°С

K 3 — коэффициент качества воды, принимаемый для городских сточных вод 0,85;
Ca — растворимость кислорода воздуха в воде, мг/л, определяемая по формуле

здесь CT — растворимость кислорода в воде в зависимости от температуры и атмосферного давления, принимаемая по справочным данным; CT =10

CO — средняя концентрация кислорода в аэротенке, мг/л; в первом приближении СО допускается принимать 2 мг/л
м3/м3 очищаемой воды
Интенсивность аэрации Ja, м3/(м2×ч) определяем по формуле

где Hat — рабочая глубина аэротенка, м;
tat — период аэрации, ч.
м3/м2×ч
Если вычисленная интенсивность аэрации свыше Ja,max для принятого значения K 1, необходимо увеличить площадь аэрируемой зоны; если менее Ja,min для принятого значения K 2 — следует увеличить расход воздуха, приняв Ja,min по табл. 43.
В нашем случае Ja,max =50 >38,9; Ja,min =4 <38,9 что не противоречит данному условию, значит расчеты проведены правильно.
Нагрузку на ил qi, мг БПКполн на 1 г беззольного вещества ила в сутки, надлежит рассчитывать по формуле(53)

мг/г×сут
Таблица 4. Сравнение аэротенков
| Параметры | Аэротенки - смесители без регенераторов | Аэротенки-смесители с регенераторами |
| Длина, м | 15 | 15 |
| Глубина, м | 4 | 4 |
| Ширина, м | 11,78 | 9 |
| Период аэрации,ч | 4 | 2 |
Для проектирования используем аэротенки – смесители с регенераторами, так как по расчетам они более компактные, а также в них меньшая нагрузка на ил.
2.2 Расчет биологических фильтров
Биологические фильтры (рис.) представляют собой резервуары, заполненные твердым кусковым материалом (шлак, кокс, щебенка, керамзит), через который фильтруется поступающая на поверхность загрузки сточная вода.
Поверхность всех частиц загрузки покрывается сплошной биологической пленкой за счет адсорбции микробов из сточной воды и последующего их размножения. Биологическая пленка играет роль основного активного агента в очистке воды.
Биологические фильтры следует проектировать в виде резервуаров со сплошными стенками и двойным дном: нижним — сплошным, а верхним — решетчатым (колосниковая решетка) для поддержания загрузки. При этом необходимо принимать: высоту междудонного пространства — не менее 0,6 м; уклон нижнего днища к сборным лоткам — не менее 0,01; продольный уклон сборных лотков — по конструктивным соображениям, но не менее 0,005. Капельные биофильтры следует устраивать с естественной аэрацией, высоконагружаемые — как с естественной, так и с искусственной аэрацией (аэрофильтры). Естественную аэрацию биофильтров надлежит предусматривать через окна, располагаемые равномерно по их периметру в пределах междудонного пространства и оборудуемые устройствами, позволяющими закрывать их наглухо. Площадь окон должна составлять 1 —5 % площади биофильтра. В качестве загрузочного материала для биофильтров следует применить щебень или гальку прочных горных пород, керамзит, а также пластмассы, способные выдержать температуру от 6 до 30 ° С без потери прочности. Загрузка фильтров по высоте должна быть выполнена из материала одинаковой крупности с устройством нижнего поддерживающего слоя высотой 0,2 м, крупностью 70—100 мм.
В зависимости от климатических условий района строительства, производительности очистных сооружений, режима притока сточных вод, их температуры биофильтры надлежит размещать либо в помещениях (отапливаемых или неотапливаемых), либо на открытом воздухе.
Капельные биологические фильтры

Рис.7 Капельный биофильтр
1-дозирующие баки сточной воды; 2-спринклеры; 3-загрузка биофильтров; 4-железобетонные стенки; 5-подача сточной воды на очистку.
БПКполн сточных вод Len =300 мг/л > 220 мг/л поэтому надлежит предусматривать рециркуляцию очищенных сточных вод.
Для капельных биофильтров надлежит принимать:
рабочую высоту Hbf = 1,5—2 м;
гидравлическую нагрузку qbf = 1—3 м3/(м2×сут);
БПКполн очищенной воды Lex = 15 мг/л.
В качестве загрузочного материала берем керамзит.
Рассчитываем коэффициент рециркуляции

где Lmix — БПКполн смеси исходной и циркулирующей воды, при этом Lmix — не более 300 мг/л;
Len, Lex — БПКполн соответственно исходной и очищенной сточной воды
При расчете капельных биофильтров величину qbf при заданных Len и Lex, мг/л, температуре воды Tw определяем по табл. 37, где
.
Оптимальная температура t=10; гидравлическая нагрузка qbf, м3/(м2×сут)=1; высота слоя загрузки Hbf = 2м.
Определяем площадь биофильтра по формуле

Расчитываем объем загрузочного материала
W=F*H м3
Исходя из того, что фильтр цилиндрической формы, определяем радиус R
м
Аэрофильтры
Аэрофильтры – высоконагружаемые биологические фильтры с искусственной аэрацией.
В аэрофильтрах необходимо предусматривать подачу воздуха в междудонное пространство вентиляторами с давлением у ввода 980 Па (100 мм вод. ст.). На отводных трубопроводах аэрофильтров необходимо предусматривать устройство гидравлических затворов высотой 200 мм.
БПКполн сточных вод, подаваемых на аэрофильтры, не должна превышать 300 мг/л. При большей БПКполн необходимо предусматривать рециркуляцию очищенных сточных вод.
БПКполн сточных вод Len =300 мг/л, следовательно коэффициент рециркуляции не предусматриваем.
При расчете аэрофильтров допустимую величину qaf, м3/(м2×сут), при заданных qa и Haf следует определять по табл. 38, где

=20
Оптимальная температура t=10; гидравлическая нагрузка
Qаf, м3/(м2×сут)=10; высота слоя загрузки Hbf = 3,8м; удельный расход воздуха qa=12 м3/м3
Площадь аэрофильтров Faf, м2, при очистке без рециркуляции необходимо рассчитывать по принятой гидравлической нагрузке qaf, м3/(м2×сут), и суточному расходу сточных вод Q, м3/сут.
Faf,= Q,/ qaf =4546/10=454,6 м2
Расчитываем объем загрузочного материала
W=F*H=454,6×3,8= 1727,48 м3
Количество аэрофильтров N=2, отсюда следует, что площадь одного аэрофильтра равна 454,6 /2 =227,3 м2
Объем загрузочного материала для одного фильтра равен
227,3×3,8= 863,74 м3
Исходя из того, что фильтр цилиндрической формы, определяем радиус R
= 12 м
Таблица 5.Размеры одного аэрофильтра
| Площадь, м2 | Диаметр, м | Глубина, м |
| 454,6 | 12 | 3,8 |
Таблица 6. Параметры аэрофильтра.
| Параметры | Аэрофильтр |
| Количество, шт. | 2 |
| Площадь,м2 | 454,6 |
| Диаметр,м | 12 |
| Глубина,м | 3,8 |
| Объем загрузочного материала,м3 | 863,74 |
Проектируем аэрофильтр, так как из-за высокой БПК в капельном биофильтре нужно предусматривать многократную рециркуляцию сточных вод.
Вторичные отстойники
Горизонтальный отстойник
Вторичные отстойники всех типов после аэротенков надлежит рассчитывать по гидравлической нагрузке qssa, м3/(м2×ч), с учетом концентрации активного ила в аэротенке ai, г/л, его индекса Ji, см3/г, и концентрации ила в осветленной воде at, мг/л, по формуле

где Kss — коэффициент использования объема зоны отстаивания, принимаемый для радиальных отстойников — 0,4, вертикальных — 0,35, вертикальных с периферийным выпуском — 0,5, горизонтальных — 0,45;
at — следует принимать не менее 10 мг/л,
ai — не более 15 г/л.

Нагрузку на 1 м сборного водослива осветленной воды следует принимать не более 8—10 л/с.
=
(м2)
Количество вторичных отстойников в проекте должно быть не менее трех.
Число отстойников определяем по формуле:
= 






