Определение прочностных характеристик в полевых условиях

Испытания проводятся в шурфах, котлованах и других выработках. Для получения характеристик  и  определяют сопротивление срезу не менее чем трех целиков при различных вертикальных нагрузках. Схемы испытаний принимаются те же, что и в лабораторных условиях. Значения  и  находят на основе построения зависимости сопротивления срезу грунта  от нормального напряжения .

Рис. 2. Схемы испытаний грунта в скважинах на срез.

а) – кольцевой; б) – поступательный; в) – вращательный крыльчаткой:

1 – лопасти; 2 - распорные штампы; 3 - скважины; 4 – штанги; 5 – устройства для создания и измерения усилия.

Полевое определение характеристик  и  в стенах буровой скважины проводится методами кольцевого и поступательного среза. Схемы испытаний приведены на рис. 2. Эти методы применяются для испытаний грунтов на глубинах до 10 м (кольцевой срез) и до 20 м (поступательный срез). В методе кольцевого среза используется распорный штамп с продольными лопастями, в методе поступательного среза – с поперечными лопастями. С помощью распорного штампа лопасти вдавливаются в стенки скважины, и создается нормальное давление на стенки. В методе кольцевого среза грунт срезается вследствие приложения крутящего момента, а в методе поступательного среза – выдергивающей силы. Для получения характеристик  и  необходимо провести не менее трех срезов при различных нормальных давлениях на стенки скважины и построить зависимость .

Метод вращательного среза с помощью крыльчатки, вдавливаемой в массив грунта или в забой буровой скважины (см. рис. 2,б) позволяет определить сопротивление срезу , поэтому его рекомендуется применять при слабых пылевато-глинистых грунтах, илах, заторфованных грунтах и торфах, так как для них угол внутреннего трения практически равен нулю и можно принять . Испытания крыльчаткой проводят на глубинах до 20 м.

Для определения характеристик прочности в полевых условиях применяют методы выпирания и обрушения грунта в горных выработках. Значения  и  вычисляют из условий предельного равновесия выпираемого и обрушаемого массива грунта.

Для определения удельного сцепления связных грунтов в полевых условиях Н.А. Цытовичем был предложен и широко используется в практике изысканий метод шариковой пробы. Существо метода заключается в том, что с помощью шарика диаметром  на грунт передается усилие  и измеряется осадка штампа  (рис.3). Тогда в соответствии с решением академика А.Ю. Ишлинского сцепление можно определить по формуле

.                                                     (2)

 

При проведении испытаний необходимо, чтобы отношение осадки штампа к его диаметру находилось в пределах .

c


F
                    а)                                             б)

 
s


                               

c0
                                  

             
 
t
 

 

 


Рис. 3. Схема испытаний шариковым штампом (а) и кривая длительной прочности грунта (б).

 

Полученное таким образом значение сцепления соответствует определенному в сдвиговых испытаниях для вязких очень малоуплотняющихся грунтов при (жирные глинистые грунты, мерзлые грунты и т.п.). При большем значении угла внутреннего трения грунта В.Г. Березанцев рекомендует в правую часть формулы (2) вводить понижающий коэффициент . Так, например, при ; при ; при .

Метод шариковой пробы удобен для определения изменения прочностных свойств грунтов в зависимости от времени действия нагрузки. Поскольку осадка  с течением времени увеличивается, в соответствии с формулой (2) шариковое сцепление будет уменьшаться. Это позволяет ввести понятия мгновенной прочности , прочности, соответствующей некоторому времени  -  и предела длительной прочности , к которому будет стремиться сцепление при очень продолжительном времени действия нагрузки.

Деформационные и прочностные характеристики грунтов могут быть определены с помощью статического и динамического зондирования. Зондирование основано на определении сопротивления погружению в грунт наконечника-зонда на глубину, превышающую его размеры.

Статическое зондирование заключается в медленном задавливании в грунт с помощью домкратов стандартного зонда – конического наконечника с углом при вершине 600.

В простейшем случае измеряют удельное сопротивление погружению конуса зонда  и строят график изменения этой величины по глубине исследуемой толщи грунта. Зная величину  можно определить модуль деформации:

для пылевато-глинистых грунтов ;

для песчаных грунтов .

Характеристики сопротивления сдвигу пылевато-глинистых грунтов по данным статического зондирования определяют по эмпирическим формулам:

; .

Динамическое зондирование производится путем забивки или ударно-вращательного погружения в грунт зонда из колонки штанг с коническим наконечником. При этом определяется показатель зондирования , равный числу ударов, необходимых для погружения зонда на 10 см. Результаты отображаются на графике. Зная из опыта величину , удельную энергию зондирования, зависящую от параметров установки, и ряд коэффициентов, учитывающих динамический процесс зондирования, можно определить динамическое сопротивление грунта . В свою очередь, величина  позволяет судить о плотности песчаных грунтов, значении их прочностных и деформационных показателей, а также об ориентировочном значении модуля деформации суглинков и глин.

 





Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: