Резисторы переменного сопротивления

 

Основные параметры резисторов переменного сопротивления приведены в таблице 11.20, а габаритные чертежи некоторых типов - на рисунке 11.12.

Резисторы переменного сопротивления применяются для регулирования силы тока и напряжения. По конструктивному исполнению они делятся на одинарные и сдвоенные, одно- и многооборотные, с выключателем и без него; по назначению - на построечные для разовой или периодической подстройки аппаратуры и регулировочные для многократной регулировки в процессе эксплуатации аппаратуры; по материалу резистивного элемента - на проволочные и непроволочные; по характеру изменения сопротивления (функциональной зависимости) - на резисторы с линейной (группа А), обратно логарифмической (группа Б), логарифмической (группа В) и другими функциональными зависимостями (группы Е, И).

Проволочные резисторы переменного сопротивления отличаются повышенной термостойкостью, нагрузочной способностью, высокой износостойкостью, стабильностью параметров при различных внешних воздействиях, сравнительно низким уровнем собственных шумов и малым ТКС. Недостатки этих резисторов - ограниченный диапазон номинальных сопротивлений, значительные паразитные емкость и индуктивность, сравнительно высокая стоимость.

 

Терморезисторы

 

Терморезистор это линейный и нелинейный резистор, сопротивление (проводимость) которого значительно зависит от температуры. Таким свойством обладают и металлы, и полупроводники.

Терморезисторы из платины, меди и других металлов изготавливают в форме проволоки диаметром 0,04…0,08 мм, бифилярно намотанной на изоляционный каркас и помещенной в герметический корпус. Такие терморезисторы имеют небольшой температурный коэффициент сопротивления (0,4…0,5%°С) и значительные габаритные размеры.

Терморезисторы на основе полупроводников имеют достаточно большое сопротивление, по сравнению с металлическими, меньшие габаритные размеры (десятые доли миллиметра) и в 10-20 раз больший ТКС. Они проще по конструкции и надежнее в эксплуатации. Поэтому полупроводниковые терморезисторы имеют более широкое применение.

С ростом температуры сопротивление металла увеличивается, что объясняется увеличением рассеяния свободных электронов на различных дефектах кристалла. Поэтому температурный коэффициент сопротивления металлических терморезисторов положительный.

Большинство полупроводниковых терморезисторов имеют отрицательный температурный коэффициент сопротивления (термисторы), что проще объяснить на примере температурной зависимости проводимости (рис. 2.1). На участке I проводимость увеличивается, (сопротивление уменьшается) за счет ионизации примеси и соответствующего увеличения концентрации свободных носителей заряда (дырок или электронов). На участке 2 проводимость может оставаться постоянной за счет того, что вся примесь ионизирована, а ионизация собственных атомов еще не наступила. На участке 3 проводимость увеличивается за счет ионизации собственных атомов и образования свободных дырок и электронов.

 

Рисунок 2.1. – Температурная зависимость проводимости

 

Для изготовления терморезисторов применяют оксидные полупроводники Mn3O4, Co3O4, CoO, CuO, кобальтово-марганцевые, медно-марганцевые и др. Терморезисторы применяются для измерения и регулирования температуры, температурной компенсации различных элементов электрических цепей, в схемах стабилизации напряжения, уровня сигнала на выходе усилителя и других целей. В зависимости от этого они делятся на следующие группы:

· терморезисторы для измерения и регулировки температуры;

· термокомпенсаторы;

· терморезисторы для теплового контроля;

· терморезисторы для стабилизации напряжения;

· измерительные терморезисторы (термисторы), в частности, болометры (для индикации и измерения теплового излучения).

Конструктивно рабочий элемент терморезистора делается в виде пластин, стержней, трубок, шариков или проволоки для металлических терморезисторов. Рабочий элемент защищается влагостойким покрытием, стеклянным, металлическим или металлостеклянным герметичным корпусом. Терморезисторы могут быть с прямым подогревом (за счет протекающих через них токов) или с косвенным подогревом (за счет специального подогревающего элемента).

Маркировка терморезисторов определяется материалом рабочего тела, параметрами, особенностями конструкции, например:

· КМТ – кобальтовомарганцевый терморезистор;

· ММТ – медно-марганцевый терморезистор;

· СТ1-21 – сопротивление термоуправляемое (1-кобальтомарганцевое, 3–медно-кобальтомарганцевое; 21 – номер разработки);

· ТКП – терморезистор с косвенным подогревом;

· ТКПМ – то же, но малогабаритный; материалом служат окислы титана, ванадия и железа.

Цепь с терморезистором изображена на рис. 1.2. При разработке практических схем с использованием терморезисторов учитываются не только зависимости ВАХ, сопротивления и других параметров от температуры самих терморезисторов, но и подобные зависимости добавочных сопротивлений, шунтов, регулируемых элементов.

Рисунок 1.2. – Цепь с терморезистором

 

E = UT + UR = UT + IR

UT = f (I)

 

Теоретическая ВАХ терморезистора приведена на рис. 1.3.

 

Рисунок 2.3. – ВАХ терморезистора

 

Помимо ВАХ важнейшей характеристикой терморезистора является зависимость его сопротивления от температуры (рис. 2.4).

 

T
0
R

Рисунок 2.4. Температурная зависимость сопротивления терморезистора с отрицательным ТКС

 

Позистором называется терморезистор с положительным ТКС. Позисторы, как и термисторы, можно использовать для температурной стабилизации режима транзисторов. Температурной зависимостью сопротивления можно управлять, используя последовательное или параллельное соединение позистора и термистора или позистора и линейного резистора. При сочетании позистора и термистора температурная зависимость сопротивления имеет максимум или минимум в зависимости от способа их соединения.

 

Варисторы

 

Варистор – это нелинейный полупроводниковый резистор, сопротивление которого зависит от приложенного напряжения. Зависимость сопротивления от напряжения наблюдается у ряда окислов и сульфидов металлов, диборита титана, карбида кремния и у многих материалов сложного состава. Для изготовления варисторов чаще применяют технический карбид кремния (SiC) различных аллотропических модификаций в виде порошка, смешанного со специальным связующим диэлектрическим веществом (связкой). В качестве связки применяют керамику, жидкое стекло, кремнийорганические лаки и другие материалы. Карбид кремния, связанный керамикой, называют тиритом. Материал со стеклянной связкой называют вилитом, а с ультрофарфоровой – лэтином.

Стехиометрическому составу карбида кремния соответствуют: 70,045% Si и 29.955% C. Кристаллы с составом бесцветны, обладают собственной электропроводностью и шириной запрещённой зоны, равной 2,8…3,1 эВ. При нарушении этого состава изменяется тип проводимости: при избытке атомов кремния преобладает электронная проводимость, а при избытке атомов углерода – дырочная.

Тип проводимости и окраска зависят также от вида примеси. Электронная проводимость и зелёная окраска получаются от примеси элементов пятой группы: N, P, As, Sb, Bi. Дырочную проводимость дают примеси второй - Ca, Mg и третьей – Al, B, Ga, In группы, окрашивая основной материал в голубой или фиолетовый цвет. Изготавливают варисторы по керамической технологии: карбид кремния измельчают в порошок, просеивают на фракции, смешивают со связкой (до 10% связки) и из этой массы прессовкой получают образцы в виде цилиндров, дисков или пластин; затем следует термическая обработка, нанесение электродов и остальные операции, типичные для производства полупроводниковых приборов.

Маркировка варисторов расшифровывается следующим образом:

· СН – сопротивление нелинейное;

· первая цифра обозначает материал (1 – карбид кремния, 2 – селен);

· вторая цифра – тип конструкции (1, 8 – стержневой, 2, 6, 7, 10 – дисковый, 3 – микромодульный);

· третья – порядковый номер разработки;

· далее указывается классификационное напряжение в вольтах и его допустимый разброс в процентах.

Например: СН1-1-1-820 10%. Расшифровка: сопротивление нелинейное из карбида кремния стержневого типа первой разработки, рассчитанное на работу при классификационном напряжении 820 В с разбросом 10%.

 

Рисунок 1. – Структура рабочего тела варистора: 1-электроды; 2-зёрна карбида кремния, 3-связующий материал

 

Рабочая область варистора (рис. 1) состоит из поликристаллов карбида кремния или другого полупроводника, разделённых диэлектрической связкой. Под действием приложенного напряжения в локальных местах соприкосновения отдельных зёрен карбида кремния или в оксидных плёнках на поверхности зёрен развиваются тепловые эффекты или эффекты сильного поля (лавинный или туннельный пробой). При увеличении плотности тока и выделяемой мощности возможен переход эффектов сильного поля в тепловые. Из–за нерегулярности площадей и сопротивлений контактов зерен, варистор обладает нелинейной и, практически, симметричной ВАХ (рис. 2).

Рисунок 2. – Вольт - амперные характеристики варисторов: 1 - СН1-2-1-56 20; 2 - …82 20%; 3 - …120 10%; 4 - …180 10%; 5 - …270 10%

 

Основное назначение варисторов – защита элементов электрических цепей постоянного, переменного и импульсного токов от перенапряжений; защита контактов реле разрушения и обмоток от пробоя. Варисторы применяют также для регулировки и стабилизации различных цепей и блоков РЭА, для улучшения их помехоустойчивости и ряда других важных функций.

Рассмотрим некоторые простые примеры практического применения варисторов. На рисунке 3 показана схема стабилизатора выходного напряжения и его выходная характеристика. Известно, что коэффициент стабилизации прямо пропорционален коэффициенту нелинейности ВАХ варистора. В частности, при :

 

 

а при :

 

 

где RСТ - статическое сопротивление варистора, β - коэффициент ВАХ нелинейности варистора.

 

Рисунок 3. – а) схема стабилизации напряжения; б) его внешняя характеристика: R – линейный резистор, В1 – варистор, RН – сопротивление нагрузки

Таким образом, для получения лучшей стабилизации нужно выбрать варистор с максимальным коэффициентом нелинейности в рабочей точке ВАХ.

Выходное напряжение может изменяться при изменении сопротивления нагрузки. При этом коэффициент стабилизации:

 

 

где ∆RН, ∆UВЫХ - приращения сопротивления соответственно нагрузки и выходного напряжения. Если, ∆RН / RН =0,3, R / RСТ =2, то КСТ =5,8 при. b=4.

Если вместо линейного резистора R включить второй варистор с коэффициентом нелинейности b2 = b1 = 4, то при ∆RН / RН =0,3 и RС2 / RС1 = 2 коэффициент КСТ = 7,4. При этом внешняя характеристика стабилизатора будет такой, как показано на рис. 1.4.

Специальным выбором режима работы стабилизатора можно получить и большие значения КСТ.

Здесь через RС обозначено статическое сопротивление варистора. Другой пример – включение варистора в схему с индуктивными элементами (рис. 5).

 

Рисунок 4. – Внешняя характеристика при замене линейного сопротивления варистором

 

Специальным выбором режима работы стабилизатора можно получить и большие значения КСТ.

Здесь через RС обозначено статическое сопротивление варистора. Другой пример – включение варистора в схему с индуктивными элементами (рис. 5).

 

Рисунок 5. – Схема включения варистора для искрогашения

 

Здесь варистор играет роль нелинейного шунта, имеющего большое сопротивление при низком напряжении и малое при всплесках. При включённой кнопке ККН напряжение на варисторе равно U, его сопротивление больше активного сопротивления RL катушки индуктивности и ток через варистор очень мал. В момент размыкания цепи возникает ЭДС самоиндукции и всплеск напряжения, сопротивление варистора резко уменьшается и ток самоиндукции замыкается на варистор. В противном случае в разрыве контактов возникла бы искра, и при многократных разрывах контакты подгорали бы.

Кроме варисторов, в качестве резисторов, управляемых электрическим полем, применяются полупроводниковые приборы с p – n переходом и МДП-структуры.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: