Тема 4.1. Коррозия металлов и методы борьбы с ней

Коррозией металлов называют самопроизвольное разруше­ние металла вследствие химического или электрохимического взаимодействия с окружающей средой.

Под воздействием внешней среды многие металлы и сплавы постепенно окисляются и разрушаются. Разрушение начинается с поверхности и с течением времени распространяется в глубь ме­таллического изделия. Коррозионно-стойкими называют метал­лы и сплавы, которые способны сопротивляться коррозионному воздействию среды. Процессы коррозии в таких металлах проте­кают с малой скоростью. Антикоррозионная защита металлов имеет большое народнохозяйственное значение, поскольку обу­словливает надежность и долговечность эксплуатации машин, ме­ханизмов, различных металлических сооружений (нефте- и газо­проводов, железнодорожных мостов, опор линий электропере­дач и др.).

Практически все металлы (кроме золота, платины и серебра) под действием влаги, воздуха, газов, растворов кислот и щело­чей корродируют и разрушаются. Различают два основных вида коррозии — электрохимическую и химическую.

Электрохимической коррозией называют процесс самопро­извольного взаимодействия металла с коррозионной средой, в хо­де которого последовательно протекают окисление металла и вос­становление окислительного компонента. Она развивается во влажной атмосфере и почве, в морской и речной воде, водных растворах солей, щелочей и кислот. При электрохимической коррозии возникает коррозионный ток и происходит растворе­ние металла вследствие его электрохимического взаимодейст­вия с электролитом. Электролитами при этом могут быть любые жидкости, проводящие электрический ток.

Коррозия большинства металлов протекает по электрохими­ческому механизму. Примерами могут быть ржавление метал­лических конструкций в атмосфере, корпусов судов в речной и морской воде, коррозия оборудования химических предпри­ятий, стальной арматуры гидросооружений.

При соприкосновении металла с электролитом положительно заряженные ионы металла с поверхности переходят в электролит. При этом электролит становится положительно заряженным, а поверхность металла — отрицательно. Между металлом и элек­тролитом возникает электродвижущая сила. Вследствие посто­янного перехода ионов с поверхности металла в электролит будет происходить его постепенное растворение, т.е. коррозия.

Количество электролита при коррозии может быть весьма незначительным. Например, для начала процесса коррозии дос­таточно конденсации влаги из воздуха на поверхности металла, поэтому электрохимическая коррозия наблюдается и в закры­тых помещениях.

В зависимости от условий, в которых протекают коррозион­ные процессы, различают атмосферную, морскую, почвенную, кислотную и щелочную, по характеру разрушения — равномер­ную и местную коррозию. Кроме того, выделяют другие виды коррозионного разрушения.

Кавитационая коррозия — это разрушение металла в резуль­тате электрохимической коррозии и ударного воздействия кавитационных пузырьков электролита при его движении с боль­шой скоростью.

Точечная коррозия — вид местной коррозии в электрохими­чески неоднородной коррозионной среде. Это наиболее опасный вид коррозии, так как распространяется на значительную глу­бину и быстро приводит изделие в негодность. Чаще всего точеч­ная коррозия наблюдается в местах механических повреждений поверхности изделия (риски, царапины, задиры), поэтому она особенно опасна для герметичных конструкций (трубопроводы, емкости, аппараты химической промышленности и т.п.), по­скольку контроль за состоянием их поверхностей затруднен.

Межкристаллитная коррозия представляет собой хрупкое коррозионное разрушение по границам кристаллов, возникающее в результате структурных превращений в процессе эксплуатации.

Коррозия начинается с поверхности и распространяется в глубь изделия, в основном по границам зерен. Этот вид коррозии имеет место также при термической обработке стали или при обработке давлением, если неправильно выбраны режимы нагрева. Такая коррозия мало заметна при визуальном осмотре, поэтому пред­ставляет определенную опасность.

Коррозионная усталость — это разрушение металла при од­новременном воздействии циклических нагрузок и агрессивной среды. Установлено, что разрушение металлов при коррозион­ной усталости более значительно, чем при раздельном воздейст­вии циклических нагрузок и коррозионной среды. Вследствие этого выносливость металлов в коррозионной среде существен­но уменьшается.

Химическая коррозия — разрушение металла вследствие хи­мического взаимодействия с внешней коррозионной средой. Про­дуктами химической коррозии являются химические соединения металла с окислительными компонентами среды, например об­разование ржавчины, вызванное действием кислорода и влаги:

4Fe + 2Н20 + 302 = 2(Fe203 Н20)

Химическая коррозия развивается при воздействии на металл сухих газов (например, продуктов сгорания топлива), сухого во­дяного пара, кислорода, а также жидкостей, не проводящих элек­трический ток.

В чистом виде химическая коррозия наблюдается, например, при высокотемпературном нагреве стали для горячей обработки давлением или термической обработки (образование окалины), на деталях топок и котлов, тепловых двигателей, газо- и нефте­проводов.

В отдельных случаях пленки из образовавшихся при хими­ческой коррозии соединений предохраняют металлы от дальней­шего разрушения. Например, плотная оксидная защитная пленка образуется на поверхности алюминия, никеля, хрома и некото­рых других металлов. Пленки оксидов железа на стальных дета­лях непрочные, они неплотно прилегают к поверхности металла и не препятствуют проникновению коррозии в глубь деталей.

Для оценки степени разрушения металлов в процессе корро­зии принят показатель, называемый коррозионной стойкостью. Коррозионную стойкость металлов можно оценить внешним ос­мотром, при этом определяют характер распространения корро­зии, особенности продуктов коррозии, прочность их сцепления с поверхностью металла и т.п.

Мерой коррозионной стойкости металлов может быть ско­рость коррозии, которую определяют по изменению массы ме­талла в результате коррозии, отнесенной к единице площади поверхности, в единицу времени. В частности, скорость коррозии выражают массой (в граммах) металла, превращенного в про­дукты коррозии за единицу времени (1 ч) и отнесенной к единице его поверхности (1 м2).

На скорость коррозии влияет состав металлов, их механиче­ская и термическая обработка, состояние поверхности, а также температура, характер среды и нагрузки. С повышением темпе­ратуры скорость коррозионных процессов возрастает. Полиро­ванные поверхности окисляются медленнее, так как пленка оксидов более равномерна по толщине и поэтому более прочно сцеплена с поверхностью металла.

По способности противостоять коррозионному воздействию внешней среды металлы подразделяют:

• на коррозионно-стойкие, обладающие стойкостью к элек­трохимической коррозии (например, высоколегированные хро­мистые стали);

• жаростойкие, способные сопротивляться коррозионному воздействию агрессивных газов в ненагруженных или слабо на­груженных конструкциях, при высоких температурах (выше

550 °С);

• жаропрочные, работающие в нагруженных узлах машин и длительно сохраняющие работоспособность при высоких темпе­ратурах;

• кислотостойкие, не разрушающиеся в агрессивных кислот­ных средах.

• Все конструкционные и инструментальные материалы в боль­шей или меньшей степени подвержены коррозионному дейст­вию внешней среды. Большая часть изделий в машиностроении изготовлена из сталей и чугунов, поэтому их защита от корро­зии представляет наибольший интерес.

• Существует много способов защиты металлов от коррозии. Вы­бор того или иного способа определяется конкретными условия­ми работы или хранения изделия. В настоящее время с целью увеличения срока службы изделий и обеспечения надежности их работы используют следующие способы защиты от коррозии: нанесение металлических и неметаллических покрытий, при­менение ингибиторов коррозии, химическая и электрохимиче­ская защита.

• Металлические покрытия применяют для защиты от кор­розии деталей машин и приборов, а также различных металло­конструкций. При этом выбирают металл, обладающий доста­точной коррозионной стойкостью в данной среде. В ряде случаев нанесенные покрытия могут повысить износостойкость не только отдельных деталей, но и изделия в целом.

• Различают два типа металлических покрытий — анодное и катодное. При анодном покрытии изделие защищают метал­лом с большим отрицательным электродным потенциалом. Срок службы анодных покрытий возрастает при увеличении их тол­щины. Анодное покрытие защищает основной металл готовых изделий электрохимически. Для железоуглеродистых сплавов в качестве анодного покрытия может быть использован цинк или кадмий. Покрытие из цинка наносят также на медь, латунь, алюминий. Цинковые покрытия широко применяют для защиты листовой стали, а также водопроводных труб и различных ре­зервуаров от действия воды и других жидкостей.

• Катодные покрытия производят металлами, электродный потенциал которых в данном электролите выше потенциала ос­новного металла. Катодные покрытия создают механическую защиту основного металла. Нарушение сплошности покрытия (например, механическое повреждение) приводит к усилению электрохимической коррозии основного металла. Для сталей катодным покрытием может быть олово, медь, никель.

• Металлические покрытия наносят различными способами. Наиболее часто применяют горячий способ, гальванизацию, а также напыление и плакирование.

• При горячем способе получения покрытия изделие погружают в расплавленный металл, который смачивает поверхность и по­крывает ее тонким слоем. Затем изделие вынимают из ванны и охлаждают. Горячий способ применяют для нанесения тонкого слоя олова (лужение) или цинка (цинкование).

• Лужение применяется в производстве белой жести, для по­крытия внутренних поверхностей пищевых котлов и для дру­гих целей, цинкование — для защиты проволоки, кровельного железа, труб.

• Гальванизация, т.е. нанесение металлических покрытий галь­ваническим путем, основана на физических законах о прохож­дении постоянного электрического тока через жидкую среду- электролит. При этом в качестве анода применяют металл, кото­рый необходимо нанести в качестве покрытия. Катодом служит изделие. При пропускании тока через электролит анод раство­ряется в электролите и наполняет его катионами, которые затем разряжаются на катоде (изделии). Гальванизация обеспечивает нанесение покрытия практически из любого металла на заго­товки также из любого металла. Толщину гальванического по­крытия можно регулировать в достаточно широких пределах.

• Напылением плазменной струей наносят антикоррозионные покрытия из расплавленного металла (металлизация), оксидов, боридов, нитридов и других соединений. Они могут применяться в виде проволоки, прутков или порошков. Аппараты для напыле­ния называются металлизаторами. Преимуществом плазменного напыления является формирование покрытий высокой плотности при хорошей сцепляемости с основанием.

• Плакирование (термомеханическое покрытие) заключается в совместной горячей прокатке основного и защитного металлов. Сцепление между металлами осуществляется в результате диф­фузии под влиянием совместной деформации горячей заготовки. Защищаемый металл покрывают с одной или с обеих сторон ме­дью, медными сплавами, алюминием или нержавеющей сталью.

• Неметаллические покрытия выполняются из лаков, кра­сок, эмалей, смазок, пластмасс и других органических и неорга­нических веществ.

• Наиболее распространенным способом защиты металлокон­струкций, машин и механизмов от воздействия различных аг­рессивных сред являются лакокрасочные покрытия, которые имеют значительные преимущества перед металлическими. Они легко наносятся на изделие, хорошо закрывают поры, не влияют на свойства металла и являются сравнительно недорогими. При правильном подборе лаков и красок и соблюдении технологии их нанесения срок службы покрытий около 5 лет.

• Технологический процесс нанесения лакокрасочного покры­тия включает подготовку поверхности, приготовление лакокра­сочных материалов, нанесение покрытий и их сушку.

• При длительном хранении и транспортировке металлические изделия покрывают специальными консервационными смазками и жирами. При необходимости смазки периодически обновляют.

• Ингибиторы коррозии — это органические и неорганические соединения, которые вводят в небольших количествах в агрес­сивную среду для предотвращения коррозии или уменьшения ее скорости. Ингибиторы коррозии используют, например, для защиты различных трубопроводов, теплообменных аппаратов, нефтедобывающего и химического оборудования.

• Химическая защита заключается в искусственном создании на поверхности изделия защитных пленок. Защитные пленки получают при воздействии на металл сильных химических реа­гентов. Наведение оксидных пленок называют оксидированием. Наиболее широко применяют оксидирование для защиты от кор­розии алюминия, магния и их сплавов.

• На стальных изделиях наводят также пленки из фосфатов мар­ганца и железа. Этот процесс называют фосфатированием. По­лучаемые при этом пленки прочнее оксидных.

• Электрохимическая защита — защита металлов от коррозии при помощи протекторов. Протекторы применяют для защиты конструкций, соприкасающихся с электролитом. Протекторы. — пластины из металла, имеющего в данной среде меньший элек­тродный потенциал, чем потенциал основного металла. Протекто­ры прикрепляют к поверхности защищаемого изделия, в результа­те образуется гальваническая пара, в которой анодом является протектор, а катодом — изделие. В таких условиях протектор будет постепенно разрушаться, защищая основной металл. После полного разрушения протектор заменяют. Таким способом за­щищают, например, подводные части морских судов, прикрепляя к ним цинковые протекторы.

• Катодную защиту применяют для защиты подземных метал­лических сооружений (трубопроводов, кабелей и др.), которые присоединяют к отрицательному полюсу источника постоянного тока, а положительный полюс заземляют.

• Следует заметить, что значительное повышение антикорро­зионных свойств сталей достигается введением в их состав неко­торых легирующих элементов. При оптимальном сочетании таких элементов можно создать композиции, практически не корроди­рующие в данной среде. Так, сталь, содержащая 12 % хрома, коррозионно-стойкая в атмосфере и других средах. Введение в сталь никеля повышает ее кислотостойкость, дополнительная присадка меди повышает антикоррозионность в кислых средах при повы­шенных температурах.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: