Описана лабораторная установка для очистки воды от тяжелых

металлов и органических примесей методом электрокоагуляции

с использованием переменного асимметричного тока [43].

В Армении на заводе “Автогенмаш” изучена возможность

очистки стоков гальванического завода прецизионных станков методом электрокоагуляции с помощью железных стружек. В настоящее время обе промышленные установки работают на кировоканских заводах [44].

 

1.3.2. Метод электрофлотации

 

Методы электрофлотации, разработанные сравнительно недавно, позволяют очищенную сточную воду вернуть в производство и рекуперировать ценные компоненты. В этом процессе очистка сточных вод от взвешенных частиц происходит при помощи пузырьков газа, образующихся при электролизе воды и использовании растворимых электродов. На аноде возникают пузырьки кислорода, на катоде - водород. Поднимаясь в сточной воде, пузырьки флотируют взвешенные частицы.

Метод обеспечивает очистку сточных вод гальванопроизводства от ионов тяжелых металлов до ПДК, также очищает от жиров и масел. Проводятся эксперименты по извлечению ионов тяжелых металлов из сточных вод гальванопроизводства при помощи нерастворимых анодов. Метод внедрен на ряде предприятий.

Разработчики и изготовители: РХТУ им. Менделеева, ОАО “Импульс” (Москва).

 

   

 

 

Достоинства метода

 

1) Очистка до требований ПДК.

2) Незначительный расход реагентов.

3) Простота эксплуатации.

4) Малые площади, занимаемые оборудованием.

5) Возможность возврата ИТМ до 96%.

6) Возможность очистки от жиров, масел и взвешенных

частиц.

7) Высокая сочетаемость с другими методами.

8) Отсутствие вторичного загрязнения.

 

Недостатки метода

 

1) Незначительное (до 30%) снижение общего солесодержания очищаемых стоков.

2) Аноды из дефицитного материала.

3) Необходимость разбавления концентрированных вод.

4) Большой расход электроэнергии, ее дороговизна

[28 - 31].

 

 

 

1.3.3. Метод электролиза

 

В процессах электрохимическое окисление протекает на положительном электроде - аноде, которому ионы отдают электроны. Вещества, находящиеся в сточных водах, полностью распадаются с образованием более простых и нетоксичных веществ, которые можно удалять другими методами. В качестве анодов используют различные электрически нерастворимые вещества: графит, магнетит, диоксиды свинца, марганца и рутения, которые наносят на титановую основу. Катоды изготавливают из молибдена, сплава железа с вольфрамом, сплава вольфрама с никелем, из графита, нержавеющей стали и других металлов, покрытых молибденом, вольфрамом или их сплавами. Метод используется на многих предприятиях. 

Применению электролиза до последнего времени препятствовала низкая производительность аппаратов с плоскими электродами. Перспективы решения этой проблемы открылись с разработкой и внедрением в практику достаточно простых и надежных электролизеров с проточными объемно-пористыми волокнистыми электродами. Они позволяют ускорить процесс извлечения металлов более чем в 100 раз за счет высокой удельной поверхности и повышенного коэффициента массопередачи (до 0.05 – 0.1 м3/с). Применяются и другие типы аппаратов с развитой электродной поверхностью, например псевдоожиженного типа, разрабатываемые в Киеве и Санкт-Петербурге.

Работы в этом направлении также требуют дальнейшего развития: поиск путей увеличения доступной электролизу внутренней поверхности электродов; оптимизация стадии регенерации осажденного металла и анодных процессов; разработка более компактных, дешевых и экономичных электролизеров, а также стойких и дешевых анодных материалов.

Разработаны электролизеры типа Э-ЭУК, Е-91А, ЭПУ (ВПТИЭМП), модуль - МОПВ (НИТИАП, Нижний Новгород), регенераторы (ЦМИ “Контакт”, Пермь).

В США разработана конструкция электролизера для извлечения тяжелых металлов, в котором однородный поток мельчайших пузырьков воздуха, направленный перпендикулярно поверхности катода, разрушает примыкающий к катоду диффузный слой электролита. Это резко улучшает массообмен в электролите и повышает выход по току [45]. Также в США широко используется электролизер, оборудованный биполярными электродами из углеродистой стали. Расход электроэнергии составляет 10 кВт на 1 кг тяжелых металлов. При содержании тяжелых металлов более 50 мг/л электрохимическая обработка осуществляется в несколько стадий. Концентрация вредных примесей тяжелых металлов после очистки не превышает по каждому из них 0.05 мг/л [46,47].

В Днепропетровском химико-технологическом институте предложено сточные воды обрабатывать в электролизере с растворимым анодом из пористого титана в присутствии замещенного амида иминосульфиновой кислоты формулы C6H5S(=NSO2C6H5)NHSO2C6H5.Размеры пор пористого титана 20 – 300 мкм, общая пористость 20 – 40 % [48].

Приведена схема одноступенчатой электролитической установки для удаления тяжелых металлов (удаление 90% металлических ионов) из сточных вод. В бездиафрагменном электролизере используются 2 насыпных катода, между которыми расположен пластинчатый анод. Катод состоит из гранул, изготовленных из материала, который плохо сцепляется с осаждаемыми металлами и поэтому осаждаемый металл выпадает на дно в виде порошка [49].

   

Достоинства метода

 

1) Отсутствие шлама.

2) Незначительный расход реагентов.

3) Простота эксплуатации.

4) Малые площади, занимаемые оборудованием.

5) Возможность извлечения металлов из концентрированных

стоков.

Недостатки метода

 

1) Не обеспечивает достижение ПДК при сбросе в водоемы рыбохозяйственного назначения.

2) Аноды из дефицитного материала.

3) Неэкономичность очистки разбавленных стоков

[28 - 31].

 

Существуют также электролитические методы, к которым относится метод гальванокоагуляции.

 

1.3.4. Метод гальванокоагуляции

 

Метод внедрен на ряде предприятий. Разработчики: “Гипроцветметобработка”, “Казмеханобр”. Изготовители: Востокмашзавод (Усть-Каменогорск), Бердичевский машиностроительный завод и др.

На предприятии “Казмеханобр” испытан

гальванокоагуляционный аппарат типа КБ-1 производительностью 50-100 м3 /сут для очистки сточных вод. [50].

 

Достоинства метода

 

1) Очистка до требований ПДК от соединений Cr(VI).

2) В качестве реагента используются отходы железа.

3) Малая энергоемкость.

4) Низкие эксплуатационные затраты.

5) Значительное снижение концентрации сульфат-ионов.

6) Высокая скорость процесса.

 

Недостатки метода

 

1) Не достигается ПДК при сбросе в водоемы рыбохозяйственного назначения.

2) Высокая трудоемкость при смене загрузки.

3) Необходимость больших избытков реагента (железа).

4) Большие количества осадка и сложность его

обезвоживания [28 - 31].

 

 

1.4.МЕМБРАННЫЕ МЕТОДЫ

 

Методы мембранного разделения, используемые в технологии выделения цветных металлов из сточных вод гальванопроизводства, условно делятся на микрофильтрацию, ультрафильтрацию, обратный осмос, испарение через мембраны, диализ, электродиализ. Наибольшие успехи в отношении эффективности и технологичности выделения цветных металлов достигнуты при использовании обратного осмоса, ультрафильтрации и электродиализа [2, 18].

 

1.4.1. Метод обратного осмоса

 

Обратным осмосом и ультрафильтрацией называют процессы фильтрования растворов через полупроницаемые мембраны под давлением, превышающем осмотическое давление. Мембраны пропускают молекулы растворителя, задерживая растворенные вещества. При обратном осмосе выделяются частицы (молекулы, гидратированные ионы), размеры которых не превышают размеров молекул растворителя. При ультрафильтрации размер отдельных частиц на порядок больше.

От обычной фильтрации такие процессы отличаются отделением частиц меньших размеров. Давление, необходимое для проведения процесса обратного осмоса (6 - 10 МПа) значительно больше, чем для проведения процесса ультрафильтрации (0.1 – 0.5 МПа).

Известно, что при обратном осмосе степень извлечения хрома равна 94 – 95%. Отмечено, что с ростом рН скорость фильтрования уменьшается в 3 – 4 раза, а при более низких рН срок службы мембран уменьшается.

Изготавливаемые установки типа УГОС, УРЖ (НИИТОП, Нижний Новгород); УСОВО-2.5-001 (ПО «Точрадиомаш», Майкоп); ДРКИ (СБНПО-Биотехмаш, Москва); УМГ (АО «Мембраны», Владимир) сложны при эксплуатации, используются в редких случаях.    

 

Достоинства метода

 

1) Возможность очистки до требований ПДК.

2) Возврат очищенной воды до 60% в оборотный цикл.

3) Возможность утилизации тяжелых металлов.

4) Возможность очистки в присутствии лигандов,

образующих прочные комплексные соединения.

 

Недостатки метода

 

1) Необходимость предварительной очистки сточных вод от масел, ПАВ, растворителей, органики, взвешенных веществ.

2) Дефицитность и дороговизна мембран.

3) Сложность эксплуатации, высокие требования к

герметичности установок.

4) Большие площади, высокие капитальные затраты.

5) Отсутствие селективности.

6) Чувствительность мембран к изменению параметров

очищаемых стоков [28 - 31].

 

1.4.2. Метод электродиализа

 

Электродиализ - это метод, основанный на избирательном переносе ионов через перегородки, изготовленные из ионитов (мембраны) под действием электрического тока. Обычно используют пакеты из чередующихся анионо- и катионообменных мембран. Ионообменные мембраны проницаемы только для ионов, имеющих заряд того же знака, что и у подвижных ионов [6].

Несмотря на очевидные теоретические преимущества, эти

методы пока не получили широкого распространения в отечественной гальванотехнике. Основной причиной этого является высокая капиталоемкость, а также то, что выпускаемые серийно электродиализаторы имеют большое межмембранное расстояние (2 мм), что ведет к увеличению их размеров, росту омических потерь, а также снижению удельной производительности аппаратов. Этот недостаток удалось преодолеть разработкой ряда аппаратов с малым межмембранным расстоянием (0.5 мм) и аппаратов, содержащих в межмембранном пространстве зерна ионитов или ионообменные волокна. Метод электродиализа имеет большие перспективы. В то же время он нуждается в существенной доработке. В частности, необходимы:

- поиск эффективных мер по предотвращению осадкообразования и отравления мембран;

- разработка путей обеспечения специфичного ионного

транспорта;

- конструирование надежных и компактных аппаратов,

адаптированных к условиям гальваноцеха;

- разработка конкретных технологий, позволяющих

утилизировать концентраты и получать технологическую воду;

- создание новых дешевых ионообменных мембран (стойких,

например, в концентрированной хромовой кислоте), а также фильтров, предотвращающих засорение аппаратов [1, 2, 13, 19].

Изготавливаемые установки типа ЭДУ, ЭХО и другие

предназначены для обессоливания природных вод. Для гальваностоков случаи внедрения единичны. Разработчики: ЦНТИ, ВНИИХТ, НКТБ “Импульс” и др.

 

Достоинства метода

  

1) Возможность очистки до требований ПДК.

2) Возврат очищенной воды до 60% в оборотный цикл.

3) Возможность утилизации ценных компонентов.

4) Отсутствие фазовых переходов при отделении примесей,

что позволяет вести процесс при небольшом расходе энергии.

5) Возможность проведения при комнатных температурах без

применения или с небольшими добавками химических реагентов.

6) Простота конструкций аппаратуры.

 

Недостатки метода

 

1) Необходимость предварительной очистки стоков от масел, ПАВ, органики, растворителей, солей жесткости, взвешенных веществ.

2) Значительный расход электроэнергии.

3) Дефицитность и дороговизна мембран.

4) Сложность эксплуатации.

5) Отсутствие селективности.

6) Чувствительность к изменению параметров очищаемых

вод [28 – 31, 51].

 

Кроме методов, рассмотренных выше, существуют также комбинированные мембранные методы. Так, электролиз в сочетании с электродиализом приобретает новое качество: достигается не только полное обессоливание и, следовательно, оборот воды, но и улучшение условий работы электродиализатора за счет уменьшения осадкообразования на мембранах. Такой метод успешно испытан в Новосибирске [1].

 

 

1.5. СОРБЦИОННЫЕ МЕТОДЫ

   

Сорбционные методы являются наиболее распространенными

для выделения хрома из сточных вод гальванопроизводства. Их можно условно поделить на три разновидности:

1) сорбция на активированном угле (адсорбционный обмен);

2) сорбция на ионитах (ионный обмен);

3) комбинированный метод.

 

1.5.1. Адсорбционный метод

 

Адсорбционный метод является одним из эффективных методов извлечения цветных металлов из сточных вод гальванопроизводства. В качестве сорбентов используются активированные угли, синтетические сорбенты, отходы производства (зола, шлаки, опилки и др.).

   

 

Минеральные сорбенты - глины, силикагели, алюмогели и гидроксиды металлов для адсорбции хрома из сточных вод используются мало, так как энергия взаимодействия их с молекулами воды велика - иногда превышает энергию адсорбции.

Наиболее универсальными из адсорбентов являются

активированные угли, однако они должны обладать

определенными свойствами:

- слабо взаимодействовать с молекулами воды и хорошо - с

органическими веществами;

- быть относительно крупнопористыми;

- иметь высокую адсорбционную емкость;

- обладать малой удерживающей способностью при

регенерации;

- иметь высокую прочность;

- обладать высокой смачиваемостью;

- иметь малую каталитическую активность;

- иметь низкую стоимость.

Процесс адсорбционного извлечения шестивалентного хрома

из сточных вод ведут при интенсивном перемешивании

адсорбента с раствором, при фильтровании раствора через слой

адсорбента или в псевдоожиженном слое на установках

периодического и непрерывного действия. При смешивании

адсорбента с раствором используют активированный уголь в

виде частиц диаметром 0,1 мм и меньше. Процесс проводят в одну или несколько ступеней [6].

Рядом исследователей изучена адсорбция хрома на

активированном угле как функция рН. Установлено, что

хром (VI) легко адсорбируется на активированном угле в виде анионов, таких как HCrO4- и CrO42-. В ряде работ показано, что предварительная обработка адсорбентов азотной кислотой повышает их сорбционную способность по хрому (VI) [2].

Известен способ адсорбции хрома из сточных вод при

использовании твердого лигнина. Установили, что процесс сорбции зависит от рН раствора и дозы лигнина. Оптимальное время контакта раствора с лигнином составляет 1 час [20]. В качестве сорбента в основном используется активированный уголь, другие сорбенты используются крайне редко.

В качестве других сорбентов в различных

исследованиях предлагаются:

а) отходы пивоваренной промышленности (картон с сорбированным

штаммом дрожжей Saccharomyces carlsbergensis [52];

б) древесные опилки, предпочтительно сосновые, обработанные сополимером винилового эфира моноэтаноламина с виниловым эфиром 4-метилазагепта-3,5-диен -1,6-диола (СВЭМВЭ)[153];

в) растительный материал (шлам-лигнин, целлюлоза и др.) [54,

55];

г) железные опилки [56];

д) цеолиты, силикагели, бентонит [57];

е) глины [57,58];

ж) вермикулит [59].

 

Достоинства метода

   

1) Очистка до ПДК.

2) Возможность совместного удаления различных по природе

примесей.

3) Отсутствие вторичного загрязнения очищаемых вод.

4) Возможность рекуперации сорбированных веществ.

5) Возможность возврата очищенной воды после

корректировки рН.

 

Недостатки метода

 

1) Дороговизна и дефицитность сорбентов.

2) Природные сорбенты применимы для ограниченного круга

примесей и их концентраций.

3) Громоздкость оборудования.

4) Большой расход реагентов для регенерации сорбентов.

5) Образование вторичных отходов, требующих

дополнительной очистки [28 - 31].

 

1.5.2. Метод ионного обмена

 

 Ионообменное извлечение металлов из сточных вод позволяет рекуперировать ценные вещества с высокой степенью извлечения. Ионный обмен – это процесс взаимодействия раствора с твердой фазой, обладающей свойствами обменивать ионы, содержащиеся в ней, на ионы, присутствующие в растворе. Вещества, составляющие эту твердую фазу, называются ионитами. Метод ионного обмена основан на применении катионитов и анионитов, сорбирующих из обрабатываемых сточных вод катионы и анионы растворенных солей. В процессе фильтрования обменные катионы и анионы заменяются катионами и анионами, извлекаемыми из сточных вод. Это приводит к истощению обменной способности материалов и необходимости их регенерации.

Наибольшее практическое значение для очистки сточных вод приобрели синтетические ионообменные смолы – высокомолекулярные соединения, углеводородные радикалы которых обрзуют пространственную сетку с фиксированными на ней ионообменными функциональными группами. Пространственная углеводородная сетка называется матрицей, а обменивающиеся ионы – противоионами. Кажый противоион соединен с противоположно заряженными ионами, называемыми анкерными. Реакция ионного обмена протекает следующим образом:

RSO3H + NaCL = RSO3Na + HCL,

при контакте с катионитом, где R – матрица, Н – противоион, SO3 - анкерный ион;

ROH + NaCL = RCL + NaOH,

при контакте с анионитом.  

Для извлечения из сточных вод гальванопроизводства катионов трехвалентного хрома применяют Н-катиониты, хромат-ионы CrO32- и бихромат-ионы Cr2O72- извлекают на анионитах АВ-17, АН-18П, АН-25, АМ-п. Емкость анионитов по хрому не зависит от величины рН в пределах от 1 до 6 и значительно снижается с увеличением рН больше 6. При концентрации шестивалентного хрома в растворе от 800 до 1400 экв/л обменная емкость анионита АВ-17 составляет 270 - 376 моль*экв/м3.

Регенерацию сильноосновных анионитов проводят 8 - 10 %-ным

раствором едкого натра. Элюаты, содержащие 40 - 50 г/л шестивалентного хрома, могут быть направлены на производство монохромата натрия, а очищенная вода - использоваться повторно [2, 6].

На базе ВлГлУ разработана технология локальной очистки

хромсодержащих стоков с целью извлечения из них соединений тяжелых цветных металлов, в т.ч. и хрома сорбцией на сильноосновном анионите. Степень очистки воды по данной технологии более 90 - 95%. Очищенная вода соответствует ГОСТ 9.317-90 и вполне пригодна для использования в системах замкнутого водооборота [21]

    

Изготавливаются: фильтры типа “ЭКОС-2” в ВНИИХТ,

сорбенты: в НТЦ “МИУСОРБ” (Видное, Моск. обл.), МП “Поиск” (Ашхабад), ТОО “ТЭТ” (Долгопрудный, Моск. обл.), ВНИИХТ (Москва).

Фирмой Inovan Umwelttechnik GmbH & Co KG разработана блочно-модульная установка системы REMA, предназначенная для очистки производственных сточных вод от тяжелых металлов. Одинарный блок представляет собой ионообменную колонку, в которой вертикально друг под другом установлены 4 сменные кассеты.В процессе очистки сточные воды последовательно пропускают через эти кассеты снизу вверх. Степень загрязненности ионообменной смолы определяют с помощью индикаторов [60].

На заводе “Почвомаш” (Киров) внедрен процесс очистки промстоков гальванических производств от ионов хрома волокнистыми материалами. Для сорбции анионов хрома используют материал ВИОН АС-1, имеющий в своем составе сильноосновные винилпиридиниевые группы с СОЕ 1.1 – 1.2 мг*экв/г. Изготовлены две сорбционных колонны из коррозионно-стойкой стали объемом 50 л каждая. Сорбция хрома зависит от его концентрации в исходном растворе. Так, если концентрация составляет до 10 мг/л, то в фильтрате его не обнаруживают. Однако при концентрации аниона хрома 75 мг/л и выше содержание его в фильтрате 0.04 – 0.01 мг/л, что вполне допустимо при замкнутом цикле. Влияние исходной концентрации раствора хрома на его содержание в фильтрате обусловлено высоким ионным радиусом Cr2O72-,вызывающим стерические затруднения при сорбции на волокнистом хемосорбенте. При высоком содержании хрома следует уменьшить скорость подачи раствора на сорбционную колонну. В этом случае возрастает степень очистки. При достижении насыщения сорбционных колонн их снимают со стенда и транспортируют в отделение гальванохимической переработки для регенерации хемосорбционного материала и утилизации элюата. Регенерацию ВИОН АС-1 проводят раствором Na2CO3. При этом в каждую колонну заливают по 50 л раствора и оставляют его на 3 часа. Последующая операция заключается в промывке фильтра водой [61].

Было проведено исследование 8 волокнистых сорбентов, применяемых для очистки сточных вод от ионов тяжелых металлов (Ag, Hg, Cr, Cd, Fe).Установлено, что волокнистые сорбенты ПАН-ПЭА, ПАН-ТТО-МКХК и угольное волокно эффективно очищают сточную воду от ионов тяжелых металлов. Они легко регенерируются путем обработки кислотами и могут многократно использоваться для очистки. Из раствора, полученного после регенерации волокон, можно выделять металлы и использовать их повторно [62].    

Синтезированы ионообменные материалы на основе отходов швейного и трикотажного производства, содержащие полиэфирное, полиакрилонитрильное волокно. Установлено, что синтезированные ионообменные волокна проявляют селективные ионообменные свойства [63].

В лабораторных условиях исследовано выделение хрома из промывных сточных вод гальванических цехов с помощью ионообменных смол (ионообменные смолы в ОН-форме типа “Wolfatit” (ГДР) марок SWB, SZ, SL, SBK, АД-41 и активированного угля марки AS)и углеродистых сорбентов. Показано, что ионообменные смолы можно использовать для очистки сточных вод в промышленном масштабе [64].

Система mod-ix фирмы “Krebs & Co.AG” (ФРГ) включает предварительный фильтр, вентили, трубопроводы, насосы, приборы для контроля качества воды по ее электросопротивлению и две интегрированные в нее ионообменные колонки с пропускной способностью 1.5 – 4 м 3 /ч. Одна из колонок используется по прямому назначению, другая в это время регенерируется. Описанная система состоит из отдельных модулей и поэтому легко монтируется и демонтируется [65].

   

Достоинства метода

 

1) Возможность очистки до требований ПДК.

2) Возврат очищенной воды до 95% в оборот.

3) Возможность утилизации тяжелых металлов.

4) Возможность очистки в присутствии эффективных

лигандов.

 

Недостатки метода

 

1) Необходимость предварительной очистки сточных вод от масел, ПАВ, растворителей, органики, взвешенных веществ.   

2) Большой расход реагентов для регенерации ионитов и

обработки смол.

3) Необходимость предварительного разделения промывных

вод от концентратов.

4) Громоздкость оборудования, высокая стоимость смол

5) Образование вторичных отходов-элюатов, требующих

дополнительной переработки [28 - 31].

 

1.6. КОМБИНИРОВАННЫЕ МЕТОДЫ

 

Наиболее распространенным из всех разновидностей сорбционного метода является комбинированный метод, который заключается в использовании и угля, и ионитов одновременно для извлечения хрома. Суть его такова: сточные воды подаются на гравийно-угольный фильтр, затем последовательно на сильнокислый катионит, слабоосновной анионит и далее - сильноосновной анионообменник. После прохождения всего комплекса выделения хрома через ионообменные колонны, вода имеет высокую степень чистоты и может использоваться повторно. Извлеченный хром может быть направлен на утилизацию в кожевенную промышленность для дубления кож [4].

Английскими химиками исследована эффективность извлечения хрома из сточных вод гальванопроизводств коллоидной флотацией в присутствии гидроксида железа (III) и ПАВ. Гидроксид железа вводили в раствор в виде предварительно полученного геля, либо его образование происходило непосредственно в обрабатываемом растворе при гидролизе добавляемого нитрата железа. В качестве ПАВ использовали натрийлаурилсульфат или смесь его с лауратом натрия (ЛН). Изучена зависимость степени флотационного извлечения хрома от дозы и способа введения гидроксида железа, количества и вида используемого ПАВ. Установлено, что наибольшая степень извлечения хрома, равная 94 - 98% достигается при использовании смеси ЛН (30 - 50 мг/л) и НЛС (60 - 100 мг/л). Оптимальное рН составляет 7 - 8, доза гидроксида железа 25 мг/л. Содержание хрома после флотации снижается с 74 - 80 мг/л до 1.2 - 4.7 мг/л. Более глубокое извлечение ионов хрома из растворов достигается на второй ступени флотации [22]. В последние годы определенный интерес приобретает так называемая ионная флотация с додециламином, когда в объем раствора вводят гидролизирующиеся коагулянты, флокулянт, а затем флотируют образовавшиеся хлопья. Ионы хрома сорбируются на хлопьях и удаляются с ними из воды. При этом степень их извлечения составляет 80% [23, 24].

Для выделения тяжелых металлов, в том числе и хрома,

из сточных вод гальванопроизводства учеными было предложено использовать хелатообразующий реагент с дитиоаминогруппами. Последний получают путем смешения одинаковых количеств органических диаминосоединений и CS2 при пониженной температуре в течение нескольких часов с последующей нейтрализацией щелочным раствором и удалением непрореагировавшего CS2. Образующийся после интенсивного перемешивания в течении 20 - 120 минут осадок хелата хрома удаляют седиментацией или фильтрацией [25].

В мировой практике применяется технология извлечения хрома путем сочетания ионообменного и мембранного методов (ультрафильтрации) [26].

Волжским объединением легковых автомобилей разработан

способ контактирования сточных вод гальванопроизводства с сорбентом, концентрирование отходов проводят одновременно с наложением импульсного низкочастотного электромагнитного поля на утилизируемые отходы. При этом происходит селективное осаждение металлов на электродах аппаратов. Способ обеспечивает комплексную дискретную утилизацию ионов тяжелых металлов, удовлетворяя требованиям ПДК [27].

Большие успехи достигнуты в результате работ по электрохимическому регулированию рН с выделением гидроксидов металлов в совокупности с электрофлотацией и электролизом. Это направление успешно развивается в Москве (РХТУ), а также на Украине.

     

 

К комбинированным методам следует также отнести сочетание ионообменного или экстракционного отделения металлов с их последующим электроэлюированием, т.е. электролизом элюэнта, непрерывно циркулирующего между ионообменником и электролизером. Это существенно снижает количество сбросов в процессе регенерации ионообменника [66].

 

1.7. Выводы

    

Таким образом, в настоящее время имеется достаточно широкий ассортимент методов, позволяющих перерабатывать сточные воды гальванопроизводства с получением пригодного для дальнейшего использования продукта и оборотной воды. Однако ни один метод нельзя считать универсальным, т.е. эффективным и дешевым, поэтому наиболее целесообразно применять комбинированные методы, например, сочетать ионообмен с электролизом, электролиз с электродиализом, электролиз с электрофлотацией, сорбция с электродиализом и т.д. 

 

.

2.АНАЛИЗ СУЩЕСТВУЮЩЕЙ СХЕМЫ ОЧИСТКИ ХРОМСОДЕРЖАЩИХ СТОКОВ

 

2.1. Общие сведения о предприятии

 

Завод «Автоприбор» был создан в 1932 году и выпускал тогда всего пять наименований приборов. Сейчас на предприятии выпускается около пятисот наименований приборов. Предприятие расположено в северо-восточной части города Владимира.

Структуру завода «Автоприбор» образуют следующие подразделения: цеха основного производства, вспомогательные цеха, а также ряд отделов. Цеха основного производства: № 1 – цех цинкового литья; № 2, 19 – штампово-прессовые; № 3, 17 – автоматно-механические; № 10 – пластмассового литья; № 5, 8, 15, 16, 18 – сборочные; № 4 – цех окраски;

№ 9, 20 – цеха гальванопокрытий. Вспомогательные цеха: № 7 – ремонтно-механический; № 6, 22 – инструментальные; № 11 – автоматизации; № 12 – энергоцех; № 13 – строительный; № 14 – транспортный; № 21 – станкостроения. Основные отделы: 1 – отдел главного конструктора; 2 – отдел главного технолога; 3 – отдел главного металлурга; 4 – станкостроения; 5 – отдел главного механика; 6 – отдел главного энергетика; 7 – автоматизации; 8 – специальное конструкторское бюро; 9 – отдел автоматизированной системы управления; 10 – отдел стандартизации; 11 – отдел научно-технической информации; 12 – отдел снабжения; 13 – отдел сбыта; 14 – отдел комплектации; 15 – финансовый отдел; 16 – отдел труда и зарплаты; 17 – бухгалтерия [67].

На заводе «Автоприбор» существуют два цеха гальванопокрытий: цех № 20 и цех № 9. В гальваническом цехе № 9, находящемся на площадке «А», в процессе гальванопокрытия деталей и в подготовительных операциях выполняются: обезжиривание и травление в растворах щелочей и кислот, электрохимическое цинкование, меднение, кадмирование, никелирование, пассивирование в растворах хрома, электрополирование [68].

Применение защитных, защитно-декоративных и специальных покрытий позволяет решить ряд задач, среди которых важное место занимает защита металлов от коррозии. Гальванические покрытия применяются для придания поверхности деталей ряда ценных специальных свойств: повышенной твердости, износостойкости, высокой отражательной способности, улучшенных антифрикционных свойств, поверхностной электропроводности, облегчения паяемости и для улучшения внешнего вида деталей.     

     

 

2.2. Станция нейтрализации площадки «А»

 

По характеру сброса сточные воды гальванических цехов разделяются на периодические (концентрированные) и постоянноотводимые (промывные). Сточные воды цеха № 9 отводятся на очистные сооружения без разделения на промывные и концентрированные по трем раздельным трубопроводам: циансодержащие, хромсодержащие и кисло-щелочные.

Сточные воды, поступающие на станцию нейтрализации площадки «А», содержат ионы тяжелых металлов: цинка, никеля, кадмия, меди, хрома (III), хрома (VI), а также цианиды, щелочи, кислоты (см. табл. 2.3.). Очистка хромсодержащих сточных вод осуществляется методом реагентного обезвреживания, или реагентным методом, сущность которого заключается в переводе растворимых в воде ионов тяжелых металлов в нерастворимые при добавлении различных реагентов с последующим отделением их в виде осадков.             Проект станции нейтрализации был разработан Государственным Проектным Институтом (Москва) в 1971 году. Очистные сооружения запроектированы на работу в непрерывном режиме, но при работе в непрерывном режиме оборудование станции нейтрализации не обеспечивает необходимого качества очистки стоков цеха № 9. В начале эксплуатации очистные сооружения были переведены на работу в периодическом режиме с ручной регулировкой подачи реагентов в реакторы. Биологическая очистка отсутствует.

Проектом предусматривается:

1. Очистка хромсодержащего стока в две стадии:

а) восстановление шестивалентного хрома до хрома трехвалентного на установке периодического действия;

б) образование и обезвреживание гидрооксида хрома с выпадением в осадок совместно с кисло-щелочными стоками на установке периодического действия.

2. Очистка циансодержащих стоков: окисление цианидов до углекислого газа и азота в одну ступень на установке периодического действия.

3. Обезвреживание кисло-щелочных и хромсодержащих стоков (2-я ступень) в камере смешения и реакции с последующим осветлением в 2-х отстойниках производительностью 45 л/c.

Проектная производительность станции нейтрализации составляет     5880 м 3 /сут., в том числе по стокам:

Хромсодержащие – 1560 м3/сут.;

Циансодержащие – 960 м3/сут.;

Кисло-щелочные – 870 м3/сут.

Фактическое количество сточных вод, поступающих на очистку 1242.8 м 3/сут., в том числе по стокам:

Хромсодержащие – 750 м3/сут.;

Циансодержащие – 109 м3/сут.;

Кисло-щелочные – 403.8 м3/сут.

     

В штате станции нейтрализации площадки «А» работает 49 человек. Из них: 4 – лаборанты, 4 – ИТР (два мастера, начальник станции нейтрализации и технолог), 41 – рабочие. Работа осуществляется в две смены.

 

2.2.1. Технологическая схема очистки хромсодержащих сточных вод

    

Технологическая схема очистки хромсодержащих сточных вод приведена на рис. 2.1. Очистка хромсодержащих стоков осуществляется в две ступени. Хромсодержащие сточные воды самотеком поступают на усреднитель У, откуда насосами подаются в реакторы Р1 и Р2, установленные на первом этаже станции. Первая ступень – восстановление шестивалентного хрома до трехвалентного бисульфитом аммония (при добавлении серной кислоты) в кислой среде при рН= 2.5:

    

4CrO3 + 6NH4HSO3 + 3H2O = 2Cr2(SO4)3 + 3(NH4)2 SO4 + 6H2O

 

Процесс автоматизирован: при наполнении бака и подаче сжатого воздуха, по сигналу датчика рН-метра (в настоящее время рН измеряется вручную) открывается вентиль подачи кислоты. При рН=2.5 вентиль закрывается. По сигналу датчика, сигнализирующего наличие хрома (VI) в баке, открывается вентиль подачи бисульфита аммония. Реакция идет при перемешивании (мешалкой), цикл составляет 45 мин. При концентрации хрома (VI) в баке равной 0.1 мг/л, вентиль закрывается и сток со станции очистки самотеком поступает в приемную камеру насосной станции, где происходит предварительное его смешение с кисло-щелочными стоками.   

Вторая ступень – перевод ионов трехвалентного хрома в гидроксид хрома с последующим его осаждением. Из реакторов сточная вода поступает в камеру реакции и смешения К, куда после смешения с кисло-щелочными и циансодержащими сточными водами и 15-ти минутного перемешивания воздухом подается известковое молоко (при рН стока не меньше 8.5):

   

Cr 2(SO4)3 + 3Ca(OH)2 = 2Cr(OH)3   + 3CaSО4

Обезвреженные сточные воды из камеры смешения и реакциии самотеком поступают в отстойник О, куда для ускорения осаждения подается 0.1% раствор полиакриламида. После часового отстаивания вода поступают в горколлектор на доочистку, а осадок через донные клапаны насосом подается в шламоуплотнитель Ш. Шлам со шламоуплотнителя подается на фильтр-пресс ФП. Фильтрация идет до тех пор, пока не перестанет идти фильтрат, который подается обратно в камеру смешения и реакции. Отфильтрованный осадок легко отделяется от фильтроткани отдувкой воздухом и выгружается машинистами в поддоны, а затем увозят автопогрузчиком (см. рис. 2.1.) [69,70]. Количество шлама около 7 - 8 т/сут. Состав основного оборудования для очистки сточных вод станции нейтрализации площадки «А» приведен в табл. 2.2. Показатели очистки хромсодержащих сточных вод приведены в табл. 2.3.

 

2.2.1.1. Приготовление рабочих растворов бисульфита аммония (10%), гипохлорита натрия (10%), известкового молока.

 

Для приготовления 10%-ного бисульфита аммония отбирают пробу и определяют активность товарного бисульфита аммония, заполняют рабочую емкость до половины и перекачивают расчетное количество товарного бисульфита аммония в рабочую емкость насосом. Раствор перемешивают при подаче сжатого воздуха, затем рабочую емкость заливают водой до максимального уровня [69].

Приготовление 10%-ного раствора гипохлорита натрия: отбирают пробу и определяют активность технического гипохлорита натрия, перекачивают расчетное количество гипохлорита натрия из емкости с товарным гипохлоритом натрия в рабочую емкость, добавляют воду до максимального уровня [70].

При приготовлении известкового молока известь загружается и в барабане должно установиться такое соотношение воды и извести, при котором образуется известковое молоко плотностью 1.15 – 1.2 кг/м3.

Стоимость и расход реагентов для очистки сточных вод станции нейтрализации площадки «А» см. табл. 2.1.

 

2.2.1.2. Очистка сточных вод на отстойнике-усреднителе

 

Оборудование: приемная камера объемом 10 м3; камера смешения объемом 80 м3 ; отстойник-усреднитель объемом 323 м3; емкости для известкового молока с механической мешалкой объемом 2 м3, 2 шт.; емкость для приготовления полиакриламида объемом 2 м3 , 2 шт.; насосы; расходная емкость товарного бисульфита аммония объемом 16 м3.

Химикаты: известковое молоко, 5%-ный раствор; полиакриламид ТУ 6-01-1049-81, 0.1%-ный раствор; бумага универсальная индикаторная; дифенилкарбазид- раствор; кислота серная, 2 Н раствор; бисульфит аммония технический ГОСТ 113-98-6-87.

Работа в ручном режиме: отстойники-усреднители предназначены для очистки сточных вод от солей тяжелых металлов, нейтрализации воды до рН=8 – 9.5. Усреднение происходит за счет перемешивания поступающей воды с уже имеющейся в камере. Обезвреженные хромовые и цианистые стоки самотеком поступают в камеру смешения отстойников-усреднителей [78].

    

2.2.1.3. Контроль за технологическим процессом

 

Производится каждую смену с помощью специального ковша каждую смену через равные промежутки времени. Сточную воду проверяют на рН с помощью индикаторной бумаги. Контроль за наличием шестивалентного хрома в сточной воде в камере смешения, после отстойников-усреднителей проводят по качественному анализу: к 10 мл обезвреженной воды добавить 10 капель 2 Н раствора серной кислоты и 12 капель дифенилкарбазида. При наличии шестивалентного хрома вода окрашивается в сиренево-розовый цвет.

Отбор проб производится: из приемной камеры, после отстойников-усреднителей, с общего выхода после очистных сооружений [78].

                                                                                          Таблица 2.1.

Стоимость и расход реагентов для очистки сточных вод


                                                                                   Затраты на

Наименование        Стоимость, Расход, т       реагенты,

 реагента                   руб./кг                                тыс.руб./год


        1                        2                   3                       4


бисульфит аммония  1.45           228.5                    331.325

 

гипохлорит натрия    1.80           410.0                    738.0

 

серная кислота           2.20           535.0                   1177.0

 

полиакриламид          7.10             32.5                    230.75

 

известь                        0.45           334.6                      150.57

 

хлорная известь        10.80              8.8                      95.04

 

гипохлорит кальция   9.20             23.2                    213.44  

 

                                                                                               Таблица 2.2.

 

Состав основного оборудования очистных сооружений [71].

 


Наименование                       Количество, шт.      Объем, м3;           

                                                                                

                                                                                


                 1                                      2                            3


Накопитель хромовых стоков            1                           323

 4-х секционный               

Накопитель цианистых стоков           1                           323

 

Реактор хромовый                               2                            85

 

Реактор цианистый                              1                            17

 

Камера реакции и смешения               1                            80

 

Отстойник горизонтальный,

Производительностью                         2                

45 л/с

Фильтр-пресс 60-ти рамный                1                   

K/FPRV-880

Фильтр-пресс марки РОМ-40                  2

 

Реагентные баки:

 

- под бисульфит аммония                  2                           4

 

- под гипохлорит натрия                    2                           4

 

- под кислоту                                       2                           4

 

 

 

 

 

 

 

 

                                                                                             

                                                                                         Таблица 2.3.

 

Показатели очистки хромсодержащих сточных вод по

существующей технологической схеме [72].


Наименование Единицы До       После     ПДК Степень

ингредиентов измерения очистки очистки согл. очистки,%       


      1                 2            3           4         5         6


РН                       -           2.0           8.0        -              

 

Сухой остаток мг/л      820.5         70.9    1000          91.4

 

Цианиды          мг/л          0.2     0.00005 0.28     98.9

 

Хром (VI)        мг/л           94.2       0.00008 0.14    98.9

 

Хром (III)         мг/л        16.3          0.32    0.5      98.0 

 

Железо             мг/л           0.3    0.2       0.736  50.0

 

Цинк                мг/л       175.5        0.45     0.079       98.7 

 

Медь               мг/л            8.5     0.21     0.05    97.5

 

Никель            мг/л           5.7      0.086  0.09         98.5

 

Кадмий           мг/л               не обн.  -        0.021          -

 

Нефтепродукты мг/л           1.0      1.0       0.69      0  

 

 

2..3. Утилизация промышленных отходов завода «Автоприбор»

 

Площадка для размещения промышленных отходов размещается западнее поселка Ново-Александрово Суздальского района на территории бывшей городской свалки. В настоящее время данный полигон не отвечает современным требованиям к спецполигонам по захоронению твердых бытовых отходов, поэтому туда могут вывозиться только отходы, относящиеся к 4 классу опасности. Только треть всех отходов находит свое применение в строительстве. (Описание рекультивации полигона см. Приложение 1).

 

2.4. Оценка эффективности работы очистных сооружений станции  нейтрализации площадки “А”

 

Из недостатков станции нейтрализации следует отметить:

1) Реагентный метод очистки приводит к образованию большого количества обводненных осадков, содержащих токсичные тяжелые металлы. Из-за отсутствия специального полигона основная масса осадков складируется на собственной территории предприятия, что создает реальную угрозу вторичного загрязнения окружающей среды.

2) Осадки от нейтрализации сточных вод содержат тяжелые металлы в количествах, представляющих промышленную ценность, в связи с чем целесообразно извлекать их из осадка.

3) Периодический режим обезвреживания хром- и циансодержащих сточных вод, что при расходах более 30 м 3/ч не рекомендуется.

 

 

4) Отсутствие хром- и цианметров в реакторах, что приводит к перерасходу реагентов.

5) Избыточное накопление осадка в отстойниках, приводящее к их износу и снижению эффективности очистки, в том числе и по тяжелым металлам и нефтепродуктам.

 

 

 

 

                                                                                          Приложение 8.1.

 

Рекультивация полигона по захоронению промышленных отходов

 

Площадка для размещения промышленных отходов размещается западнее поселка Ново-Александрово Суздальского района на территории бывшей городской свалки.Площадка представляет собой отсыпанные и уплотненные бытовые отходы мощностью до 3 м, присыпанные грунтом. Рельеф местности спокойный с уклоном в южном направлении. Проектом предусматривается устройство замкнутых обваловок из грунта, заполнение отходами гальванического производства траншей между обваловками и засыпка отходов грунтом. Общая площадь участка 2 га, продолжительность складирования отходов 2 года. Окончательная засыпка участка полигона увязана с общей планировкой закрытой городской свалки, подлежащей рекультивации. Складированию подлежит шлам гальванического производства (в сутки 14 т). Метод складирования - траншеи. Траншеи выполнены по спланированной поверхности участка существующей городской свалки, устройством чередующихся грунтовых валов, в промежутках которых складируется шлам общим слоем не более 0.5 м. Чтобы было равномерное заполнение траншей отходами, из-за уклона местности, периодически котлован пересыпается грунтовыми перемычками. После заполнения всей длины траншеи отходами, она засыпается грунтом.

Рекультивация закрытого полигона городской свалки производится через 4 года после закрытия полигона и направлена на восстановление сенокосных угодий. Рекультивация включает в себя: технический и биологический этапы. Технический: планировка участка, отсыпка замкнутых грунтовых котлованов, их заполнение гальваническим шламом, засыпка шлама грунтом, формирование откосов, планировка шлама

                                                                        Продолжение приложения 8.1.

 

площадке, подвозка потенциально плодородного грунта и разравнивание его по участку и откосам. Рекультивационный слой состоит из отсыпанных

грунтовых валов высотой 80 см, заполненного шламом пространства между ними толщиной 50 см и присыпанного грунтом толщиной 30 см. Общий подстилающий слой засыпается на 20 см плодородной почвой. Биологический этап: уход за посевами, уборка урожая. Через 2 – 3 года территория передается совхозу для последующего использования земли. Для биологического этапа характерно внесение удобрений. Травосмесь составляется из 2 – 3 компонентов и более (клевер 10%, овсяница луговая 30%, пырей 40%, полевица белая 20%).

 

3.ПРЕДЛАГАЕМАЯ СХЕМА ОЧИСТКИ ХРОМСОДЕРЖАЩИХ СТОЧНЫХ ВОД

 

Предлагаемая схема очистки сточных вод гальванического цеха предусматривает применение комбинированного способа очистки, включающего в себя механическую очистку, сорбцию и ионообмен. Предлагается установка скорого напорного фильтра для очистки от взвешенных веществ; для задержания более крупных частиц – решетки; также предусматривается установка сорбционного фильтра для очистки от нефтепродуктов и органических веществ; электродиализатора для перевода ионов хрома(III) в ионы хрома(VI) и разложения цианидов; двух ионообменных аппаратов для селективной сорбции хрома(VI); двух ионообменных аппаратов для коллективной сорбции ионов цинка, меди и никеля.

 

 

3.1. Описание технологической схемы

    

Технологическая схема очистки хромсодержащих сточных вод изображена на рис. 3.1.

Сточные воды из гальваноцеха № 9 самотеком поступают на усреднитель У,откуда после усреднения насосом подаются на фильтр Ф. Далее сточные воды периодически насосом подаются на сорбционный фильтр П, где идет сорбция нефтепродуктов и органических веществ на сорбенте «Пороласт-F». Десорбцию нефтепродуктов проводят острым паром. Десорбат периодически собирают в емкость Е1, затем отправляют на сжигание в котельную. После сорбции на пороласте-F сточные воды подаются в электродиализатор Э, где происходит перевод ионов хром(III) в хром(VI), а также разложение содержащихся в сточной воде цианидов. 

После электрохимической обработки вода поступает на сорбцию в колонну с эрлифтным устройством А, где на селективном анионите АМ-п сорбируется хром (VI). Насыщенный ионит после сорбции периодически поступает на десорбцию в другую колонну А, где происходит десорбция хромата натрия смешанным раствором 8%-ного гидроксида натрия и 6%-ного хлорида натрия. Элюат периодически собирают в емкость Е2, затем его направляют на использование в кожевенной промышленности, либо для производства электролитов.

После сорбции хрома вода насосом периодически подается в две катионообменные колонны К, где на ионите КУ-23Na идет коллективная сорбция ионов цинка, никеля, меди. Десорбция ионита осуществляется селективно: цинка - 0.2 Н раствором серной кислоты; никеля – 2 Н раствором серной кислоты; меди – 5 Н раствором серной кислоты. Элюаты цинка, никеля и меди собираются соответственно в емкости Е3, Е4, Е5.             Очищенная вода поступает на водооборот.    

Показатели очистки по предлагаемой технологической схеме приведены в табл. 3.1.

 

3.2. Расчет основного оборудования

 

Фонд рабочего времени: станция нейтрализации площадки «А» работает по две смены в сутки (в смене 7 часов), 5 дней в неделю, 250 дней в году.

Объем хромсодержащих стоков: 750 м3/сут, что составляет 53.571 м3/ч или 0.015 м3/с.

 

3.2.1. Расчет решеток [79]

 

Диаметр труб определяем из формулы:

Q = (p*D2/4)*Ucp,                                                                                         (3.1)

D = Ö4Q/3.14*Ucp,                                                                                                                 (3.2)

где Q – объем хромсодержащих стоков, м3/с;

  Ucp – скорость движения воды в трубопроводе (перед решеткой),

   принимаем Ucp= 0.6 м/с;

D = Ö (4* 0.015)/3.14*0.6 = 0.18 м = 180 мм

Диаметр трубопровода, используемого на станции нейтрализации для подачи хромсодержащих стоков 200 мм, материал – нержавеющая сталь предполагается использовать существующий трубопровод.

Для задержания крупных плавающих отбросов на очистных сооружениях устанавливают решетки со стержнями прямоугольной формы, обеспечивающими лучшее задержание и удаление отбросов. Решетки следует оснащать механизированными граблями для снятия отбросов. При количестве отбросов менее 0.1 м3 в 1 сут допускается установка решеток с ручной очисткой.

Потери напора в решетке определяются по формуле:

Hp = k* J*Ucp2/(2g),                                                                              (3.3)

где k – коэффициент, учитывающий увеличение потерь напора из-за засорения решетки (рекомендуется принимать k=3);

   J – коэффициент сопротивления, зависящий от формы стержней: J=b*(s/b)4/3 , где                                                                                       (3.4)

   b - коэффициент для прямоугольных стержней, равный 2.42;

   s – толщина стержней, принимаем s=0.005 м;

   b – ширина прозоров решетки, принимаем b=0.016 м;

   Ucp – скорость движения воды перед решеткой, принимаем

Ucp =0.6 м/с.

Hp = 2.42*(0.005/0.016)4/3*(0.62/2*9.81)*3= 0.028 м

Необходимую площадь решетки рассчитывают по скорости течения воды в прозорах 0.8 – 1.0 м/с при наполнении, соответствующем расчетному в подводящем канале.

Fс= Q/wпр,                                                                                                   (3.5)

где wпр – скорость течения воды в прозорах, принимаем wпр=0.8 м/с.

   Fc – суммарная площадь живого сечения решетки, м 2;

Fс = 0.015/0.8 = 0.0187 м2

Определяем глубину воды перед решеткой:

h1 =0.8B,                                                                                                (3.6)

где В – высота трубопровода, принимаем В = D = 0.2 м

h1 = 0.8*0.2 = 0.16 м

Определяем число прозоров в решетке:

n = (1.1*Q)/b*h1*wпр,                                                                           (3.7)

n = (1.1*0.015)/0.016*0.8*0.16 = 9 шт

Рассчитываем высоту и параметры решетки:

Вр = b*n + s*(n-1)                                                                                (3.8)

Bp = 0.016*9 + 0.005*(9 – 1) = 0.104 м

l1 = (B – Bр)/2*tg j, φ = 20°

l1 = 1.37*(0.2 – 0.104) = 0.13 м

l2 = 0.5*l1

l2 = 0.5*0.13 = 0.65 м

l3 = 1 м (принимаем)

l4 = 0.8 м (принимаем)

Рассчитываем площадь живого сечения одного решета:

F = Fc/N,                                                                                                 (3.9)

где F – площадь живого сечения одной решетки, м2.

N – число решеток, принимаем N =2 шт.

F = 0.0187/2 = 0.0094 м2

Для обеспечения нормального обслуживания решеток расстояние между выступающими их частями должно быть не менее 1.2 м. Свободное расстояние перед фронтом решеток должно быть не менее 1.5 м.

Для отключения отдельных решеток предусматриваются в каналах до и после решеток щитовые затворы, а также устройства для опорожнения каналов. Чтобы исключить возможность затопления здания решеток при максимальном притоке сточных вод, пол здания располагают выше расчетного уровня сточной воды в канале не менее 0.5 м.

                                                                    

 

 

3.2.2. Расчет скорого напорного фильтра [79]

 

Фильтрационные сооружения применяются для частичного (предварительного) или полного удаления взвешенных веществ. Тип фильтрующего аппарата подбирают в зависимости от количества воды, подлежащей фильтрованию; концентрации загрязнений, их природы и степени дисперсности; физико-химических свойств твердой и жидкой фаз; требуемой степени очистки; технологических, технико-экономических и других факторов.

В качестве фильтрующей среды могут быть использованы природные и искусственные (кварцевый песок, дробленый гравий, антрацит, бурый уголь, доменный шлак, горелые породы, керамзиты, мраморная крошка) или синтетические (пенополиуретан, полистирол, полипропилен, лавсан, нитрон) материалы. Природные материалы применяют в дробленом (гранулированном) виде определенных фракций, а искусственные – в дробленом либо в волокнистом или тканом виде. К фильтрующим материалам также относят металлические сетки квадратного и галунного плетения, которые устанавливают в микрофильтрах, барабанных сетках и других сетчатых аппаратах.

Площадь скорого фильтра определяем по формуле:

Fф = Q/(m*v p – 3.6n*W*t1 – n*t2*vp),                                                    (3.10)

где Fф – площадь фильтра, м2;

Q – среднесуточная пропускная способность станции, Q = 750 м3/сут;

m - продолжительность работы станции, m = 14 ч (2 смены);

vф – скорость фильтрации, принимаем vp = 12 м/ч;

n – число промывок каждого фильтра в сутки при нормальном режиме эксплуатации, n = 2;

W – интенсивность промывки, принимаем W = 15 л/(с*м2);

  t1 – продолжительность промывки, принимаем t1 = 6 мин.=0.1 ч;

  t2 -  продолжительность простоя фильтра в связи с промывкой, принимается равной 0.3 ч.

Fф = 750/(16*12 – 3.6*2*15*0.1 – 2*0.3*12) = 4.3 м2

Скорые фильтры рассчитываются на рабочий и форсированный режимы при выключении отдельных секций на промывку и ремонт. Число секций фильтров должно быть не менее четырех из расчета один в резерве, один на промывке и два рабочих. При выключении фильтра на промывку допускают увеличение скорости фильтрации на остальных фильтрах на 20%.

                                  3.2.3. Расчет усреднителя [79]

 

Для обеспечения нормальной работы очистных сооружений необходимо усреднение поступающих сточных вод по концентрации загрязняющих веществ или по расходу воды, а иногда и по обоим показателям одновременно. В зависимости от этих требований назначается тип усреднителя.

 

Общий объем усреднителя рассчитываем по формуле:

Vобщ = Vраб + Vзалп + Vцикл,                                                      (3.11)

где Vраб – рабочий объем усреднителя, м3;

Vзалп – объем усреднителя для погашения залпового сброса, м3;

Vцикл – объем усреднителя для погашения циклического сброса, м3.

Рабочий объем усреднителя рассчитываем по формуле:

Vраб = Q*τ раб                                                                                  (3.12)

Q – среднесуточная пропускная способность станции нейтрализации, Q= 53.571 м3/ч;

τ – время работы станции нейтрализации, τ =14 ч;

Q = 53.571*14 = 750 м3

Объем усреднителя для погашения залпового сброса рассчитывается по формуле:

Vз = Q*Tз,                                                                                  (3.13)                        

       Ln kп                     

            kп - 1      

где Vз – объем усреднителя для погашения залпового сброса, м3;

  Q – объем сточных вод, м3/ч;

  Тз – продолжительность залпового сброса, Тз = 0.25 ч;

    kп – коэффициент подавления,

kп = (С max – С ср)/(С доп – С ср),                                                   (3.14)

где С max – максимальные концентрации загрязнения в поступающей

  воде, С max = 160 г/м3

  C ср – средняя фактическая концентрация загрязнения, С ср = 94 г/м3;

  С доп – допустимые концентрации загрязнения в усредняемой воде,

С ср = 141 г/м3.

kп = (160 –94)/(141 –94) = 1.4

Vз = 53.571*0.25/ln [1.4/(1.4- 1)] = 10.7 м3

 

Объем усреднителя определяется в соответствии с графиками притока

сточных вод и колебаний концентраций загрязнений в них. Залповое изменение концентраций в поступающих сточных водах показано на рис.3.2.

 

С max

С доп

С ср

                                  Т з

 

Рис. 3.2. Изменение концентраций загрязнений при залповом сбросе сточных вод

     

При kп< 5 объем усреднителя для погашения циклических колебаний вычисляется по формуле:

Vц = 0.16*Q*kп*Тц,                                                                             (3.15)

где Vц – объем усреднителя для погашения циклического сброса, м3;

Q – объем сточных вод, м3/ч;

kп – коффициент подавления, kп = 1.4;

Тц – период циклических колебаний, Тц = 1 ч

Vц = 0.16*1.4*53.571*1 = 12 м3

Циклическое изменение концентраций загрязнений в поступающих сточных водах показано на рис.3.3

 

С max

C доп

С ср                                           

     

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow