Расчет прочности плиты сечением, наклонным к продольной оси

Q=34.22 кА.

       Влияние усилия обжатия: Ntut=P2=193.5 кН.

       φn=0,1*N/ Rb+b*h0=0.1*193.5*103/0.9*1.2*106*0.27*0.17=0.44<0.5.

       Проверяем, требуется ли поперечная арматура по расчету. Условие: Qmax=2.5Rbt+b h0=2.5*0.9*1.2*106*0.24*0.17=110.16 кН – удовлетворяет.

       При q=g+φ/2=(5.21+6.38/2)*103=8.4 кН/м и поскольку q1=0.16* φbn(1+ φn)Rbtb=0.16*1.5*1.44*0.9*1.2*106*0.24=89.58 кН/м>q=8.4 кН/м, принимаем

с=2,5h=2.5*0.17=0.43 m.

       Другое условие: Q= Qmax-qc=(34.22-8.4*0.43)*103=30.61 кН/м;

       Qb= φbn(1+ φbn) Rbt*b*h02*c=1.5*1.44*0.9*1.2*106*0.24*0.172/0.43=37.63 кН>Q=30.61 кН – удовлетворяет также.

       Следствие, поперечная арматура по расчету не требуется. Конструктивно на приопорных участках длиной 0,25l устанавливаем арматуру ø4 Вр-I с шагом S=h/2=0.2/2=0.1m; в средней части пролета поперечно арматуре не применяется.

 

2.2.4 Расчет по образованию трещин, нормальных к продольной оси. М=43.29 кН*м.

Условие: М≤Мerc

       Вычисляем момент образования трещин по приближенному способу ядровых моментов:

                   Мerc=Rbt,sec*Wpl+Mrp=1.8*106*7.38*103+17.31*103=30.59 кН*м,

Где Мrp=P2*(eop+rtng)=0.86*193.5*103*(0.07+0.034)=17.31 кН*м – ядровой момент усилия обжатия..

Поскольку М=43,29 кН*м>Мerc=30,59 кН*м, трещины в растянутой зоне образуется.

       Проверяем, образуется ли начальные трещины в верхней зоне плиты при обжатии при --- коэффициента точности натяжения jsp=1.14.

       Расчетное условие: P1(eoprnj)≤Rbtp*Wpl=9.95 кН*м.

Rbtp*Wpl=1.15*106*11.07*10-3=16.61 кН*м;

       Т.к. P1(eopinf)=9.95 кН*м< Rbtp*Wpl=16.61 кН*м., начальные трещины не образуются.

Здесь - Rbtp=1,15 МПа – сопротивление бетона растяжению, соответствующее передаточной прочности бетона 15 МПа.

 

Расчет по раскрытию трещин, нормальных к продольной оси.

Предельная ширина раскрытия трещин: непродолжительная аerc=0,4 мм, продолжительная аerc=0,3 мм. Изгибающие моменты от нормативных нагрузок: постоянной и длительной М=34,59 кН*м, полной М=43,29 кН*м. Приращение напряжений в растянутой арматуре от действия постоянной и длительной нагрузок:

       Gs=[M-P2(Z1-lsn) ]/Ws=[34.59*103-193.5*103(0.1515-0)]/0.086*10-3=61.33 МПа.

Где Z1=h0-0.5hf/2=0.17-0.5*0.037/2=0.1515 – плечо внутренней пары сил;

lsn=0 так как усилие обжатия l приложено в ц.т. площади нижней напрягаемой арматуры, момент: Ws=As*Z1=5.65*10-4*0.1515=0.086*10-3 – момент сопротивления сечения по растянутой арматуре.

Приращение напряжений в арматуре от действия полной нагрузки:

Gs=(43,29*103-193,5*103*0,1515)/0,086*10-3=162,5 Мпа.

Вычисляем:

- ширина раскрытия трещин от непродолжительного действия веса нагрузки.

acrc1=0.02(3.5-100μ)gηφl(Gs/Es)3√d=0.02(3.5-100*0.0138)1*1*1(162.5*106/190*104)* 3√0.012=0.13*10-3 m, где μ=Аs/b*h0=5.65*10-4/0.24*0.17=0.038, d=0.012 m – диаметр растянутой арматуры.

- ширину раскрытия трещин от непродолжительного действия постоянной и длительной нагрузок:

          acrc1=0.02(3.5-100*0.0138)*1*1*1(61.33*106/190*104)* 3√0.012=0.07*10-3 m.

- ширину раскрытия трещин от постоянной и длительной нагрузок:

             acrc2=0.02(3.5-100*0.0138)*1*1*1,5(61.33*106/190*104)* 3√0.012=0.105*10-3 m

Непродолжительная ширина раскрытия трещин:

acrc= acrc1- acrc+ acrc2=(0.13-0.07+0.105)*103=0.165*10-3 m<0.4*10-3m

Продолжительная ширина раскрытия трещин:

acrc= acrc2=0.165*10-3 m<0.3*10-3m

 

Расчет прогиба плиты.

Прогиб определяем от постоянной и длительной нагрузок; f=b0/200=5.0/200≈0.03 m

Вычисляем параметры необходимые для определения прогиба плиты с учетом трещин в растянутой зоне. Заменяющий момент равен изгибающему моменту от постоянной и длительной нагрузок, М=34,59 кН*м, суммарная продольная сила равна усилию предварительного обжатия.

Ntot=P2=193.5 кН; эксцентриситет ls,tot=M/ Ntot=34.59*103/193.5*103=0.18 m; φl=0.8 – при длительной действии нагрузок.

Вычисляем: φm= (Rbtp,ser* Wpl)/(M-Mτp)=(1.8*106*11.07*10-3)/(34.29*103-17.31*103)=1.17>1 – принимаем φm=1.

Ψs=1.25-0.8=0.45<1.

Вычисляем кривизну оси при изгибе:

1/Z=M/h0*Z1s/Es*As+ Ψb/v*Eb*Ab)-(Ntot* Ψs)/h0*Es*As=

=34.59*103/0.17*0.1515*((0.45/190*109*5.65*10-4)+0.9/0.15*29*109*0.068)-(193.5*103*0.45)/0.17*190*109*5.65*10-4=0.0052 m-1.

Прогиб плиты равен: f=5/48*l20*1/2=5/48*5.92*0.0052=0.019m<0.03m.

 

Расчет плиты на усилия, возникающие в период изготовления, транспортирования и монтажа.

За расчетное принимаем сечение, расположенное на расстоянии 0,8 м от торца панели. Плиту рассчитываем на нагрузку от собственной массы:

       ζс.в=(0,2-1,4-π0,072*8)*25000*1,1=4,31 кН/м.

Момент от собственного веса: Мс.в= ζ с.в*l02/2=4.31*103*0.82/2=1.38 кН*м.

Вычисляем: αм= (Ntot*(h0-a)+Mc)/Rb*b*h02=0.268

По таблице 3.1[1] находим: η=0,84

As=∑M/Rs*τ*h0=28.47*103/280*106*0.84*0.17=7.12*10-4 m2.

Принимаем 5ФМ А-II с Аs=7.69*10-4 m2 для каркаса КП-1.

 

Расчет трехпролетного неразрезного ригеля.

Расчетная схема и нагрузки.

 

 

Нагрузки на ригель собираем с грузовой полосы шириной, равной номинальной длине плиты перекрытия.

Вычисляем расчетную нагрузку на 1 м длины ригеля.

Постоянная: от перекрытия с учетом коэффициента надежности по назначению здания:

jn=0.95; g1=3920*6*0.95=22.34 кН/м;

- от веса ригеля: g2=0.2*0.5*25000*1.1*0.95=2.61 кН/м;

Итого: g=g1+g2=(22.34+2.61)*103=24.95 кН/м.

Временная нагрузка с учетом jn=0.95; φ=4800*6*0,95=27,36 кН/м, в точности длительная

φl=3000*6*0.95=17.1 кН/м.

Кратковременное φкр=1800*6*0,95=10,26 кН/м.

Полная расчетная нагрузка – g+ φ=(24.95+27.36)*103=52.31 кН/м.

 

 

Вычисление изгибающих моментов в расчетных сечениях ригеля.

Вычисляем коэффициент отношения погонных жесткостей ригеля колонны. Сечение ригеля принято 0,2*0,5 м; сечение колонны 0,25*0,25 м.

R=Jbm*lcol/Jcol*lbm=0.2*0.52*4.2/0.25*0.253*5.2=5.2

Пролетные моменты ригеля:

1) в крайнем пролете – схемы загружения 1+2 – опорные моменты М12= -51,9 кН*м;

М21= -113,09 кН*м; нагрузка g+ φ =52.31 кН/м; поперечные силы Q1=(g+φ)l/2-(М12- М21)/l=52.31*103*5.2/2-(-51.9+113.09)*103/5.2=119 кН. Q2=142.55 кН.

Максимальный пролетный момент М=Q12/2*(g+φ)+M12=(119*103)2/2*52.31*103-51.9*103=83.46 кН*м.

  2) в среднем пролете – с х. загружения 1+3 – опорные моменты М2332= -107,79 кН*м; максимальный пролетный момент М=(g+φ)*l2/8=52.31*103*5.22/8-107.78*103=69.02 кН*м.        

Таблица 2. Опорные моменты ригеля при различных схемах загружения.

Схема загружения

Опорные моменты, кН*м

М12 М21 М23 М32
  -0,032*24,95*5,22 = - 21,59 -0,0992*24,95*5,22 = - 66,93 - 0,092*24,95*5,22 = - 62,07 - 62,07
  -0,041*27,36*5,22 = - 30,31 - 0,0628*27,36*5,22 = - 46,46 -0,0282*27,36*5,22 = - 20,86 - 20,86
  0,009*27,36*5,22 = 6,66 -0,0365*27,36*5,22 = - 27 -0,0618*27,36*5,22 = - 45,72 - 45,72
  -0,031*27,36*5,22 = - 22,93 -0,1158*27,36*5,22 = - 85,67 -0,1042*27,36*5,22 = - 77,09 -0,0455*27,36*5,22 = -33,66
Расчетные схемы для опорных моментов 1+2 -51,9 1+4 -152,6 1+4 -139,16 -139,16
Расчетные схемы для пролетных моментов 1+2 -51,9 1+2 -113,09 1+3 -107,79 -107,79

Перераспределение моментов под влиянием образования пластических шарниров в ригели.

Практический расчет заключается в уменьшении примерно на 30% опорных моментов ригеля М21 и М23 по схеме загружения 1+4; при этом намечается образование пластических шарниров на опоре.

К опоре моментов схем загружения 1+4 добавляем выравнивающую эпюру моментов так, чтобы уравнялись опорные моменты М21= М23  и были обеспечены удобства армирования опорного узла.Ординаты выравнивающей эпюры моментов.

       ∆M21=0.3*152.6*103=45.78 кН*м; ∆M23=((139,16-(152,6-45,78))*103=32,34 кН*м; при этом ∆М12=- ∆М21/3=45,78*103/3=15,26 кН*м; ∆М32≈ - ∆М23/3=- 32,34*103/3= - 10,78 кН*м.

       Разность ординат в узле выравнивающей эпюры момента предается на стойки. Опорные моменты на эпюре выровненных моментов составляют:

       М12=((-21,59-22,93)-15,26)*103=- - 59,78 кН*м;

М21=-152,6*103+45,78*103=106,82 кН*м;

М23=-139,16*103+32,34*103= - 106,82 кН*м;

М32=(-62,07-33,66-10,78)*103= -106,51 кН*м.

 

Рисунок 3 – к статическому расчету ригеля.

а) эпюры изгибающих моментов при различных комбинациях нагрузок

б) выравнивающая эпюра моментов

в) выравнивающая эпюра моментов

 

 

Опорные моменты ригеля по грани колонны.

Опорные моменты ригеля по грани средней колонны слева М(21)1:

1)по схеме загружения 1+4 и выравнивающей эпюре моментов: М(21)121-Q2*hcol/2=106.82*103-145.05*103*0.25/2=88.7 кН*м

здесь: Q2=(g+φ)*l/2-(M21-M12)/l=52.31*103*5.2/2-(106.82+59.78)*103/5.2=145.05 кН; Q1=(136-9.05)*103=126.95 кН

2) по схеме загружения 1+3: М(21)1=93,93*103-80,06*103*0,25/2=83,92 кН.

Где Q2=gl/2-(M21-M12)/l=24.95*103*5.2/2-(-93.93+14.93)*103/5.2=80.06 кН.

3) по схеме загружения 1+2: М(21)1=113,09*103-145,05*103*0,25/2=94,96 кН*м.

 

Опорный момент ригеля по грани средней колонны справа М(23)1:

1) по схеме загружения 1+4 и выровненной эпюре моментов М(23)123-Q2*hcol/2=106,82*103-136,07*103*0,25/2=89,81 кН*м.

здесь: Q=52.31*103*5.2/2-(-106.82*103+106.51*103)/5.2=136.07 кН*м.

2) по схеме загружения 1+2: М(23)123=82,93 кН*м.

Следовательно, расчетный опорный момент ригеля по грани средней опоры М=94,96 кН*м.

Опорный момент ригеля по грани крайней колонны по схеме загружения 1+4 и выровненной эпюре моментов:

М(12)112-Q1*hcol/2=59,78*103-126,95*103*0,25/2=43,91 кН*м.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: