II. Начальный этап развития

Важным моментом начала того направления, которое можно было бы назвать собственно искусственным интеллектом, была проведенная в 1956 г. конференция в Дартмуте (США). На этой конференции были К.Шеннон, М.Минский и Дж.Маккарти. Двум последним предстояло в дальнейшем сыграть крупную роль в станов­лении искусственного интеллекта. Именно на этой конференций сам термин "ис­кусственный интеллект" приобрел права гражданства.

К середине 60-х годов в СССР, США, Великобритании и других странах, в которых активно внедрялась вычислительная техника, было накоплено множество самых разнообразных программ для решения нечисловых задач. Среди них было немало таких, которые демонстрировали возможность имитации на ЭВМ отдельных творческих процессов, присущих человеку. Возникший опыт создания таких про­грамм требовал обобщения и формализации. Следствием Дартмутской конферен­ции явился "Исследовательский проект по искусственному интеллекту" – первый комплексный проект в этой области. Его возглавил Дж.Маккарти.

Стали появляться первые публикации, в которых делались попытки обобщения накопленного материала. Среди специалистов, выступивших с такими работами, были Дж.Маккарти, М.Минский, Э.Фейгенбаум (США), Д.Мичи (Великобрита­ния), А.А.Ляпунов и В.М.Глушков (СССР). В дальнейшем существенный вклад в развитие методологии искусственного интеллекта внесли Г.С.Поспелов, Н.М.Амо­сов, Д.А.Поспелов, А.С.Нариньяни, Э.В.Попов (СССР), Р.Шенк, Д.Бобров, П.Уинстон, Дж.Слейгл, Н.Нильсон, Э.Хант, Т.Виноград (США), Э.Сандовал (Швеция), М.Сомальвико (Италия) и др.

Но на пути становления искусственного 'интеллекта как самостоятельного на­правления имелось немало трудностей. Практика создания "интеллектуальных программ" выявила парадоксальное положение: чем больше создавалось таких программ, тем меньше были видны принципы их создания. Если, например, некоторый исследователь создавал эффективную программу для игры в шашки и вводил ее в память ЭВМ, то создание следующей интеллектуальной программы, предназначенной', например, для игры в домино, никак не облегчалось тем, что в памяти ЭВМ уже хранится хорошая шашечная программа. А добавление к ней программы для игры в домино ничуть не облегчало создание программы для игры в калах или какую-нибудь другую игру. Память ЭВМ могла заполняться интеллекту­альными программами сколь угодно долго, но от этого ЭВМ не становилась "интеллектуальнее". Содержимое ее памяти напоминало огромную библиотеку, в которой хранятся знания почти по всем отраслям человеческой деятельности, но которая, конечно, никаким интеллектом не обладает. Становилось ясным, что на пути простого увеличения количества программ, одновременно хранимых в ЭВМ, нельзя добиться поднятия ее коэффициента интеллектуальности.

Эта ситуация хорошо отражается в книгах по искусственному интеллекту, изданных в начале 70-х годов [19-20]. Их оглавления напоминают что-то вроде меню или прейскуранта. Отдельные главы посвящены различным типам задач, каждая из которых решается своим особенным образом, с помощью специальной, ориентированной только на эту задачу программы.

Но на этом фоне и в это же время начинают появляться первые признаки новой парадигмы. Это парадигма поиска универсальной процедуры, которая позволила бы решать единообразно большое количество интеллектуальных задач. И появление такой парадигмы естественным образом означало обращение специалистов в обла­сти интеллектуальных программ к психологам, занимающимся психологией мыш­ления и психологией решения задач.

Первой моделью психологии, которая в течение десятка лет сохраняла свое значение для работ в области моделирования интеллектуальной деятельности, явилась известная еще с начала нашего века лабиринтная модель решения задач, в наиболее общей форме описанная в 1911 г. Э.Торндайком. Согласно представле­ниям, вытекающим из этой модели, процесс решения задачи можно уподобить прохождению лабиринта. Начальные площадки лабиринта соответствуют исходным данным задачи, а пути, приводящие к целевой (или одной из целевых, если их несколько) площадке, определяют возможные, пути решения. Выбор пути на каждой из промежуточных площадок лабиринта эквивалентен принятию решения из име­ющегося в этот момент множества альтернатив. В машинных программах такому движению по лабиринту соответствует поисковая процедура, управляемая решаю­щими правилами, с помощью которых производится тот или иной выбор при каждой альтернативной ситуации.

Именно такая модель была положена в основу одной из первых программ, которую по праву можно отнести к программам искусственного интеллекта. Эта программа была создана в конце 50-х годов в США в содружестве программиста А.Ньюэлла и психолога Г.Саймона. Она была названа ее авторами General Problem Solver, т.е. "Универсальный решатель задач". Авторы программы GPS с самого начала рассматривали ее как модель описания поведения человека при решении задач широкого класса, для которых можно воспользоваться лабиринтной моделью. Основу GPS составляет специальная таблица "Цели-Средства". В строках таблицы перечислены все цели, достижение которых может потребоваться при очередном альтернативном выборе, а в столбцах указаны те средства, которые могут быть использованы на каждом шаге решения. Специальные отметки в клетках таблицы показывают, какие средства годятся для достижения тех или иных целей. А.Ньюэлл и Г.Саймон считали, что модификация этой глобальной идеи совместно с идеей многошагового планирования движения по лабиринту с учетом особенностей реше­ния тех или иных конкретных задач позволит решать большинство интеллектуаль­ных задач. Они рассмотрели две такие модификации: для доказательства теорем в исчислении высказываний и для игры в шахматы. Но если первая модификация оказалась весьма успешной, то опыт работы с шахматной программой заставил авторов GPS усомнится в глобальности выдвинутой ими идеи. Шахматная програм­ма, построенная на основе таблицы "Цели-Средства", оказалась весьма слабой и не выдержала конкуренции с шахматными программами, построенными на других принципах. Описание программы GPS и ее модификаций можно найти в [7] и [19], а также во многих других книгах по искусственному интеллекту. Идея движения по лабиринту или эффективного поиска по некоторой сетевой структуре оказалась в центре внимания многих исследователей. Работа Н.Нильсона [22] практически полностью посвящена методам поиска решений на основе лабиринтной модели.

Если лабиринтная модель оказалась в центре внимания специалистов по интел­лектуальным программам, то не менее известные в психологии модели вероятно­стного выбора и основанные на них модели обучения не оказали на этих специа­листов большого влияния. Работа Р.Аткинсона [23] и ранее предшествующие ей работы в этой области так и не вышли из сферы интересов весьма ограниченного круга специалистов, работающих в области математической психологии. Что каса­ется обучения, то в области интеллектуальных систем явное предпочтение было отдано моделям логического типа, Примерами могут служить те модели, которые исполь­зованы в известной поведенческой программе "Животное", созданной учениками М.М.Бонгарда (СССР). Близка к тем же идеям и программа формирования понятий на основе индуктивных выводов CLS, разработанная в середине 60-х годов в США под руководством Э.Ханта [24].

Лабиринтная модель решения задач оказалась слишком упрощенной. Она негласно предполагала, что лабиринт, в котором нужно найти решение, существует заранее. Но большинство творческих задач, решаемых людьми, связаны как раз с тем, как построить не слишком большой лабиринт, в котором с большой долей вероятности содержится путь, ведущий к цели.

Критика лабиринтной модели и основных на ней программ решения интеллек­туальных задач была достаточно активной. О ее характере дает представление, например, работа Д.А.Поспелова и В.Н.Пушкина [26]. В этой же работе, по-види­мому, впервые была подробно описана иная концепция решения задач человеком, которую можно было бы назвать реляционной моделью (в работе [26] она названа модельной гипотезой). Согласно этой модели исходные данные для решения задачи не представляют собой совокупность несвязанных компонентов. Между ними имеются определенные отношения, образующие структуру исходной ситуации. Аналогичным образом целевые описания образуют некоторую структуру целевой ситуации. Поиск решения сводится к установлению между этими структурами некоторого морфизма и построению путей преобразования одной ситуации в дру­гую. Эти принципы реляционной модели нашли свое подтверждение в многочис­ленных психологических экспериментах (и, в частности, при экспериментах с людьми, играющими в шахматы). Стала очевидной важность работы с отношения­ми и системами отношений, связывающими элементы проблемной среды воедино.

В середине 60-х годов в СССР возник комплекс методов решения различных управленческих задач, опирающихся на реляционную модель. Эти методы получи­ли общее название "ситуационное управление". В их основе лежит идея о том, что любая ситуация, которая может возникнуть в физическом мире, может быть описана через конечное число базовых отношений, из которых при необходимости могут быть порождены производные отношения. Те. или иные решения соответству­ют классам таких ситуаций. Центральной задачей принятия решения является отнесение текущей ситуации к одному из классов, что позволяет принять опреде­ленное решение. Сама система классов ситуаций априорно полностью не задается, а формируется в процессе функционирования системы. Концептуальная программа, лежащая в основе конкретных программ, построенных на подобных принципах, была предложена Д.А.Поспеловым и В.Н.Пушкиным и названа Гироматом. При решении ряда конкретных задач, связанных с задачами оперативного управления сложными системами, было использовано несколько конкретных реализаций этой концептуальной программы. Историю развития ситуационного управления и описа­ние принципов Гиромата можно найти в [27]. Метод ситуационного управления, пожалуй, раньше чем все другие подходы, развивавшиеся в этот период в области создания интеллектуальных программ, использовал идею представления знаний и манипулирования ими. Эта идея является центральной на современном этапе развития работ в ИИ.

Кроме лабиринтной и реляционной моделей решения задач человеком в психо­логии большое внимание уделялось ассоциативной модели. Согласно ей обучение чему-либо у человека происходит в процессе формирования ассоциативных связей, носящих вероятностный характер. В уже упоминавшейся работе [23] можно найти описание многих аспектов этой модели. На ее основе в первой половине 60-х годов Э.Фейгенбаумом и Г.Саймоном (США) было создано несколько версий программы, получившей название ЕРАМ [7,19]. Другой программой, основанной на той же модели, является созданная в СССР в группе М.М.Бонгарда программа ассоциатив­ного обучения незнакомому языку [24]. Идеи этих программ и до настоящего времени не потеряли своего значения. По существу, современное развитие моделей обучения искусственных систем все еще происходит в рамках ассоциативной модели. Необходимо упомянуть еще об одной программе универсального характера, созданной к концу 60-х годов. Это программа MULTIPLE, авторами которой являются Дж.Слейгл и Д.Конайвер [19]. Эта программа объединяла в себе програм­му обучения и программу логического вывода. Обе части программы содержат новые идеи. Так программа, осуществляющая вывод, имела средства не только для поиска конструктивного доказательства, но и средства для поиска опровергающих соображений по поводу тех или иных утверждений, а обучающая программа на основании обработки положительных и отрицательных примеров реализовывала процедуру введения оценок условий истинности тех или иных утверждений. Сово­купность подобных примеров неоднократно встречается в интеллектуальных про­граммах, относящихся к более поздним этапам развития работ в области интеллек­туальных систем. В качестве конкретных задач, на которых программа MULTIPLE демонстрировала свои возможности, использовалась игра в калах, а также анализ шашечных позиций.

На начальном этапе развития работ в области искусственного интеллекта, продолжавшемся до начала 70-х годов, можно проследить как бы две тенденции в создании моделей интеллектуальной деятельности. Одна из них – та, о которой уже шла речь. Ее сторонники рассматривают проблему создания интеллектуальных систем, как проблему создания особых программ, реализуемых на ЭВМ. При этом они не ставят перед собой задачи воспроизведения в этих программах тех процессов, которые протекают при решении тех же задач у человека. Таким образом, их интересует не то, как человек получает решение той или иной интеллектуальной задачи, а совпадение с тем результатом, который получен человеком. Такую точку зрения можно назвать информационной.

Конечно, те, кто стоят на этой точке зрения, не отвергают полезность изучения соответствующих процессов у человека. Они готовы (и это было видно из сказанного выше) использовать те или иные психологические модели или наблюдения при создании программ, но результат, получаемый программами, для них является единственной практически значимой целью. Когда авторы подобных программ высказывают мысль о том, что универсальная процедура, реализованная в програм­ме, тождественна той, с помощью которой человек решает интеллектуальные задачи данного класса (как это в свое время пытались делать авторы программ GPS, ЕРАМ или MULTIPLE), то они весьма быстро подвергаются основательной критике со стороны психологов. Оторванность моделируемых при информационной концепции процессов от нейрофизиологических механизмов, от взаимодействия мыслящего субъекта с внешним миром и деятельности в нем, всегда были предметом острой критики всего этого направления. Особенно четко негативное отношение к инфор­мационной точке зрения было высказано в начале 70-х годов Х.Дрейфусом. Его книга "Чего не могут вычислительные машины", появившаяся в 1972 г. [28], вызвала бурную дискуссию среди всех специалистов, работающих в этой области [29].

Другая точка зрения на создание интеллектуальных систем может быть названа нейробионической. Авторы, исповедующие ее, исходят из того, что для моделирова­ния феномена мышления надо техническими средствами воссоздать тот нейрофизиологический субстрат, который породил мышление в органической природе. В середине 50-х годов появились первые модели простейших рефлекторных механиз­мов, в основе которых лежали модели нейронов. На основе этих простейших механизмов путем их объединения стали моделировать более сложные поведенче­ские реакции. Достаточно полный обзор этого начального этапа нейробионических исследований дан в [30]. То, что такой подход может порождать модели, обладаю­щие достаточно сложным поведением, демонстрирует работа [31]. Описанный в ней автомат, созданный группой ученых под руководством Н.М.Амосова, способен передвигаться по незнакомой местности, изучая и запоминая ее особенности, способен регистрировать другие движущиеся в среде объекты и классифицировать их действия как дружелюбные или опасные. Эти и ряд других функций автомата формируются путем обучения, в основе которого лежат процессы усиления-тормо­жения, протекающие на сети из искусственных нейронов. В [32] изложены общие принципы моделирования интеллекта, опирающиеся на идеи, частично воплощен­ные в тележке-автомате из [31]. Наиболее последовательное изложение программы развития нейробионического направления дано М.Арбибом [32].

Исследования процессов мышления, осуществленные в 70-х годах, привлекли внимание специалистов к проблеме асимметрии мозга. Выявленные особенности работы правого и левого полушария позволили выдвинуть гипотезу о том, что в интеллектуальной деятельности человека тесно переплетаются как бы два типа мышления, которые условно можно назвать левосторонним и правосторонним. Левосторонний тип мышления характеризуется следующими особенностями: ин­формация, с которой он имеет дело, состоит из отдельных информационных единиц, организованных в виде последовательностей, основные типы операций над этой информацией носят символьно-логический характер, процедуры имеют алгоритмический характер, возможна вербализация всех проводимых операций, т.к. все они проводятся под контролем сознания. Правосторонний тип мышления характеризуется иными особенностями: информация, с которой он имеет дело, состоит из нерасчленяемых целостных комплексов, в которых информационные единицы связаны между собой системой разнородных отношений, причем эти комплексы образуют пространственно организованные "картины", основные опера­ции над которыми носят ассоциативно-топологический характер и не вербализуют­ся.

Между двумя типами мышления (иногда их метафорически называют алгебра­ическим и геометрическим) и двумя подходами к построению интеллектуальных систем (информационным и нейробионическим) имеется явная аналогия. Во всяком случае, использование ЭВМ демонстрирует все особенности левостороннего типа мышления, перечисленные выше. Это, по мнению большинства специалистов, работающих в области искусственного интеллекта, резко ограничивает возможности интеллектуальных программ и ставит проблему создания технических устройств, конструкция которых позволяла бы воспроизводить не последовательный процесс переработки символов, а одновременное протекание многих сложно взаимодейству­ющих между собой во времени и пространстве процессов. То, что такой путь может приводить к эффективному решению задач, которые не могут столь же эффективно воспроизводиться на обычных ЭВМ, было продемонстрировано еще в конце 50-х годов Ф.Розенблаттом (США), предложившим устройство под названием "перцептрон". Подобные устройства, в состав которых входили нейроподобные элементы, функционирующие параллельно, могли быть использованы после обучения для мгновенного (симультанного) распознавания зрительных, образов. Эта процедура носит четко выраженный правосторонний характер и перцептроны демонстрирова­ли ее успешное воспроизведение [34]. Ряд общетеоретических вопросов и оценки возможностей перцептронов были разработаны М.Минским и С.Пейпертом (США) [35]. В настоящее время, к сожалению, в искусственном интеллекте нет продвину­тых исследований в области создания достаточно богатых по своим возможностям устройств, которые позволяли бы моделировать иные, весьма многочисленные механизмы мышления правополушарного типа.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: