Трассировка печатной платы

 

 

Задача трассировки сводится к отысканию для каждого размещенного элемента таких позиций, при которых обеспечиваются наиболее благоприятные условия последующего электрического монтажа. Уменьшение длин соединений улучшает электрические характеристики устройства.

Система P-CAD 2001 предполагает три вида трассировки ПП:

- ручная;

- интерактивная;

- автоматизированная.

Ручная трассировка ПП предполагает рисование проводника пользователем перемещением курсора.

Интерактивная трассировка проводников производится прокладыванием трассы (движением курсора при нажатой левой кнопки мыши), при этом автоматически огибаются препятствия (проводники, выводы компонентов, переходные отверстии и области металлизации), соблюдаются допустимые зазоры. При этом часть трассы можно провести вручную, а остальную провести автоматически с соблюдением установленного ранее режима ввода проводников (ортогонально или по диагонали) и допустимых зазоров.

Автоматическая трассировка выполняется программой. На ней должны быть размещены все компоненты и указаны электрические связи между их выводами. Ограничивать область трассировки контуром трассировки, располагаемым на слое Board, не обязательно, все равно программа не обратит на него никакого внимания. Для выполнения автоматизированной трассировки печатной платы необходимо выполнить команду Route/Autorouters, после чего выбрать редактор Shape Router. В настройках трассировщика зменяем толщину дорожек, установив её равной 0,75, и расстояние 0,75 и нажимаем START. Трассировка печатной платы произошла. Нажимаем Save and Return, и возвращаемся в приложение PCB.


Заключение

 

Согласно заданию на курсовой проект, необходимо было разработать печатную плату источника питания. Все требования, которые обычно предъявляются к устройствам, были соблюдены. Это надежность, экономичность, устойчивость к воздействиям. Перечисленные критерии выполнялись при выборе элементов схемы, чтобы интервал номинальных значений не превышал допустимые пределы.

При разработке конструкции сначала были созданы библиотеки УГО и посадочных мест. На этом этапе трудностей не возникло. Хотя именно на него было потрачено больше всего времени, так как в это время осуществлялось общее ознакомление с программой P-CAD. Ошибки возникали при упаковке базы данных печатной платы и касались упаковки микросхем, в частности, были связаны с заполнением таблицы. Однако эти трудности были самостоятельно успешно преодолены.

Создание принципиальной электрической схемы производилась вручную. Здесь корректировались старые и вводились новые обозначения, номиналы и типы элементов.

Размещение элементов на плате программа выполнила автоматически, однако к расположению элементов на плате схемы предъявлялись специальные требования, касающиеся размещения элементов коммутации. То есть они должны быть расположены на краю платы. Поэтому пришлось менять расположение этих элементов вручную. Также были внесены некоторые изменения в расстановку остальных элементов на плате, чтобы уменьшить тем самым общую длину соединений, общую площадь, занимаемую элементами, число пересечения связей между элементами.

Для более углубленного улучшения качества конструкции, необходимо сперва более фундаментально изучить функциональные возможности всех элементов схемы, а потом уже осуществлять практическую реализацию.

После получения чертежей в формате P-CAD их необходимо перенести в формат AutoCAD. Для этого необходимо в программах P-CAD Schematic и P-CAD PCB войти в меню File/DFX Out.После этого откроется окно, в котором будет предложено выбрать необходимые слои (выбираем все), а также единицы измерений (мм). После нажатия ОК в текущей папку появятся файлы типа.dfx. Получив эти файлы, редактируем их в программе A-CAD так, чтобы они соответствовали ГОСТам (чертим рамку, основную надпись, корректируем надписи, создаем сетку и др.).


Литература

 

1. Акимов Н. Н., Ващуков Е. П., Прохоренко В. А., Ходоренок Ю. П. Конденсаторы, конденсаторы, трансформаторы, дроссели, коммутационные устройства РЭА: Справочник. — Мн.: Беларусь, 1994.

2. Галкин В. И., Булычев А. Л., Лямин П. М. Полупроводниковые приборы: Транзисторы широкого применения: Справочник — Мн.: Беларусь, 1995.

3. Галкин В. И., Булычев А. Л., Лямин П. М. Полупроводниковые приборы: Справочник — Мн.: Беларусь, 1994.

4. Галкин В. И., Булычев А. Л., Прохоренко В. А. Аналоговые интегральные схемы: Справочник — Мн.: Беларусь, 1994.

5. Деньдобренко Б. Н., Малика А. С. Автоматизация конструирования РЭА — М.: Высшая Школа, 1980.

6. Краткий справочник конструктора РЭА / Под редакцией Р. Г. Варламова — М.: Советское радио,1972.

7. Норенков И. П., Маничев В. Б. Основы теории и проектирования САПР — М.: Высшая Школа, 1990.

8. Разевиг В. Д. Проектирование печатных плат в P-CAD 2001 —М.: Солон-Р, 2001.

9. Снежкова И. М. Автоматизация конструкторско-технологического проектирования. Методическое пособие. — Мн.: МГВРК, 2000.

10. Цифровые интегральные микросхемы: Справочник / М. И. Богданович и др. — Мн.: Беларусь,1991.

 




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: