Хранение и переработка сахарной свеклы

4.1. Наблюдение за хранящейся продукцией

Хранение свекольной массы - комплекс мероприятий, способствующих сохранению сочной продукции до реализации или переработки. Правильная организация хранения позволяет длительное время сохранить качество продукции и свести к минимуму потери ее массы. Трудности связаны с большим содержанием в них воды в свободном состоянии. При хранении в условиях повышенной температуры это вызывает интенсивное дыхание клеток и тканей, активизирует процессы созревания и старения, усиливает испарение и развитие патогенной микрофлоры, что ведет к значительным потерям массы и качества продукции. Поэтому при хранении стремятся создать условия, замедляющие процессы жизнедеятельности хранимой продукции и микроорганизмов. В первые дни после уборки сочная продукция успешно дышит, затем интенсивность дыхания замедляется. При снижении влажности воздуха в процессе хранения усиливаются испарение, дыхание и развитие патогенных микроорганизмов. На интенсивность дыхания влияет и состав воздуха в хранилищах. Пониженное содержание кислорода и увеличенное - углекислого газа подавляют процесс дыхания сочной продукции, замедляют старение плодов и овощей и увеличивают срок их хранения. Развитие патогенных микроорганизмов, вызывающих болезни (гнили, плесени и т. п.) часто сопровождается выделением большого количества тепла и самосогреванием, что может привести к порче продукции.

На сохранность продукции значительно влияют качества сорта, его лежкость, зона выращивания, погодные условия во время вегетации и уборки, система удобрения, технология уборки, транспортировки и послеуборочной обработки, подготовка хранилища, режим хранения и др. На сохранность свекольной продукции в значительной степени влияют удобрения. Так, избыток азотных удобрений задерживает созревание плодов и снижает выход товарной продукции за период хранения. Механические повреждения при уборке, транспортировке и обработке, ранняя уборка невызревших корнеплодов, клубней и плодов и сбор перезревшей продукции также уменьшает ее лежкость при хранении.

4.2. Количественно - качественный учет

Таблица 1

Расчет убыли массы при хранении

Дата учета (число, месяц)   Масса сахарной свеклы (т) Среднемесячный остаток (т)   Норма естественной убыли (%) Потери (т)  
1.09;11.09;21.09 0 1125 3000 1875 1,0 18,75
1.10;11.10;21.10 3000 3000 3000 3000 0,8 24
1.11;11.11;21.11 3000 3000 3000 3000 0,8 18
1.12;11.12;21.12 3000 3000 3000 3000 0,6 18
1.01;11.01;21.01 2800 2600 2400 2500 0,6 12,5
1.02;11.02;21.02 2200 2000 1800 1900 0,5 7,6
1.03;11.03;21.03 1600 1400 1200 1300 0,4 5,2
1.04;11.04;21.04 1000 800 600 700 0,4 2,8
1.05;11.05;21.05 400 200 0 133,3 0,5 0,6

 

Суммарные потери в свекольной массе составили:

18,75 + 24 + 18 + 18 +12,5 +7,6 + 5,2 +2,8 +0,6 = 107,45 (тонн)

4.3. Производства сахара-песка

Завод начинает работать после поступления выкопанных с полей корнеплодов. По мере поступления корнеплодов на завод начинают формировать кагаты.

Основные этапы производства сахара-песка: хранение в кагате, складе или на сплавной площадке; гидротранспортирование сырья в помещение завода; очистка от примесей в свекловичной массе на гидротранспортере и в моечных машинах; взвешивание отмытого сырья; получение из корнеплодов стружки для диффузии; получение диффузионного сока; очистка диффузионного сока (дефекация); дальнейшая очистка сока (сатурация и сульфитация); сгущение сока выпариванием; кристаллизация сахара; переработка оттеков; сушка, охлаждение и хранение сахара-песка.

Подготовка сырья.

С кагатного поля корнеплоды по желобам гидротранспортеров сплавляют в бурачную завода. По мере движения корнеплодов по транспортеру они частично отмываются от прилипшей грязи и других примесей. Гидротранспортеры, имеющие прямоугольное сечение, оборудованы ловушками для отделения корней, песка и легких примесей. Накапливаемая в бункере бурачной свекла с помощью другого гидротранспортера поступает в моечную машину, где отмывается и дополнительно очищается от примесей.

Применяют различные марки свекломоек. Наиболее распространена кулачковая КМЗ-57М. Свекломасса перемещается в мойке с помощью шнека и кулачков. Трение корнеплодов друг о друга способствует очистке их поверхности. Песок и земля проходят через верхнее сетчатое дно машины, а камни улавливаются камнеловушкой. Легкие примеси всплывают на поверхность воды в моющей части свекломойки и через щели смываются в желоб с водой. Моющая вода поступает непрерывно в выбрасывающую часть машины навстречу потоку отмытых корнеплодов.

При перемещении корнеплодов по гидротранспортерам и их обработке водой в свекломоечной машине происходят потери сахарозы, которые достигают 0,3-0,4 % массы свеклы и зависят от продолжительности нахождения корнеплодов в воде, их состояния и температуры воды. Последняя должна быть не выше 15-18 °С. Оп­тимальное время нахождения корнеплодов в гидротранспортере не более 6 мин, а в свекломойке 6-8 мин. В некоторых случаях это время увеличивается до 20-30 мин.

Для усиления эффекта осаждения примесей и дезинфекции в транспортерно-моечную воду вводят 0,2-0,3 % СаО массы корнеплодов. Изменение рН среды до 10-11, т.е. щелочной, останавливает деятельность микрофлоры и предупреждает образование органических кислот, декстрана и левана. Дезинфицируют корнеплоды на завершающем этапе мойки хлорной известью вместе с подаваемой чистой водой в количестве 10-20 кг на 100 т корнеплодов.

Использованная в гидротранспортерах и при мойке вода сильно загрязнена. В 1 л такой воды содержится до 1 г растворенных и 3-5 г взвешенных веществ при большом количестве микрофлоры, главным образом почвенной. Дальнейшая утилизация такой воды возможна лишь после очистки. Воду помещают в отстойники и осветленную снова используют в гидротранспортерах с добавкой в нее свежей воды. Нижнюю часть отстоя направляют на поля фильтрации или на биологическую очистку.

Сахарный завод расходует много воды. Так, если использовать на заводе только прямоточную схему водоснабжения, а отработанную воду не возвращать в производство, то потребность в воде составит около 1500 % массы корнеплодов.

Используя на различных этапах производства отработанную и очищенную воду, безвозвратный расход чистой воды может быть доведен до   100-150 %. На заводах разработаны система использования различных отработанных вод и классификация в зависимости от загрязнения.

Мытые корнеплоды на специальном транспортере, снабженном подвесным электромагнитным сепаратором, освобождаются от ферропримесей и поступают на взвешивание. Последнее необходимo для составления баланса сахарозы - соотношение количества сахарозы, введенной с переработанным сырьем, и сахарозы в выработанном сахарном песке, потерянной в производстве, содержащейся в мелассе и продуктах незавершенного производства.

Взвешивают корнеплоды на автоматических порционных весах ДС-800 с электрическим приводом производительностью 100 т/ч. Затем корнеплоды поступают в бункер-накопитель перед свеклорезками.

Изрезывание корнеплодов в стружку.

Успех извлечения сахара при диффузии во многом зависит от качества стружки: тургора ее клеток и ткани, отношения ее поверхности к единице мacсы и др. Поэтому стружку получают толщиной 1,2-1,5 мм и шириной 4-6 мм в виде полосок желобчатой или прямоугольной формы. Стружку получают на свеклорезных машинах: центробежных, дисковых или барабанных, в которых рабочими органами являются ножи, закрепленные в рамы. На заводах России более распространены центробежные свеклорезки.

Качество стружки оценивают длиной 100 г стружки в метрах (число Силина), выложенной в одну линию. Для удобства подсчета стружку укладывают в канавки на специальной доске. Хорошая стружка имеет длину 12-15 м. При этом обрывки стружки короче 1 см и мезгу в канавки не укладывают. Такого брака должно быть не более 3 %, т.е. 3 г на 100 г стружки. Качество стружки может быть ухудшено в результате нарушения работы свеклорезок (нарушения в установке ножей, попадания примесей и др.).

Получение диффузионного сока.

Полученная стружка поступает в диффузионные аппараты, где и происходит экстракция сахара - переход его в воду. Одновременно с сахаром в водную фазу переходят и растворимые в воде несахара. При смешивании путем залива в аппарат объема воды, соответствующего объему свекловичного сока, будет экстрагированна лишь половина сахара. Для дальнейшего извлечения сахара потребуется свежая вода. Такой процесс извлечения сахара путем настаивания («мацерации») оказывается длительным и громоздким. Для его осуществления требуется целая батарея аппаратов - диффузоров (12-14) и трубопроводных коммуникаций, чтобы менять очередность каждого из них. Все это требует применения большого числа насосов и затрат энергии.

Систему мацерации долгое время применяли на заводах для получения диффузионного сока. Теперь на заводах применяют систему противоточной диффузии в свекловичной стружке, разработанную крупным русским ученым П.М. Силиным на основе первого закона диффузии Фика.

С созданием действующих диффузионных автоматизированных аппаратов непрерывного действия вертикальных (колонных) или наклонных двухшнековых процесс получения диффузионного сока является основным на заводах.

Скорость диффузии сахара и растворимых несахаров зависит от температуры воды. Так, при температуре 70 °С коэффициент диффузии возрастает в 3 раза по сравнению с температурой 20 °С. Рекомендуемая температура при этом должна быть 70-75 °С. При более высоких температурах происходит интенсивное набухание пектиновых веществ и размягчение стружки. Температуры ниже 70 °С способствуют активному развитию микроорганизмов.

Важный фактор в процессе диффузии - рН среды. Так, при рН = 5,3-6,3 наблюдаются наименьшая пептизация и меньший переход протопектина в диффузионный сок. Важен и срок диффузии в аппарате. Он ограничен 1 ч. При более продолжительном времени выделяется больше растворимых пектиновых веществ.

Для более легкого выделения сахарозы стружку перед загрузкой в диффузоры ошпаривают в специальных аппаратах - ошпаривателях. Стружку смешивают с соком, нагретым до температуры 85 °С. В результате чего происходит коагуляция белков протоплазмы клеток, облегчающая переход сахаров в раствор.

Несмотря на постоянную высокую температуру (до 70 °С), в диффузорах может развиваться термофильная микрофлора, находящаяся на стружке и содержащаяся в воде. Для предупреждения развития этой микрофлоры в диффузоры и ошпариватели вводят 40 %-й раствор формалина в количестве 0,01 % массы свеклы. Эту операцию повторяют через 2 ч.

В результате диффузионного процесса образуется три компонента: диффузионный сок, обессахаренная стружка и мезга (мелкие частицы свекловичной стружки). Процесс диффузии завершается почти полным обессахариванием стружки, называемой жомом. Содержание сахарозы в нем не превышает 0,2-0,3 % массы свеклы. Дальнейшее обессахаривание стружки нетехнологично и неэкономично. Отделяемый от диффузионного сока жом прессуют на шнековых прессах до содержания 12-14 % сухих веществ и в таком виде сразу же скармливают скоту, так как он быстро портится. Большую часть жома прессуют до содержания сухих веществ 22-25 % и затем досушивают до содержания сухих веществ 86 %. При такой влажности его хранят, транспортируют и реализуют на различные цели (выработку комбикормов, получение пектина и т.д.). Перед прессованием в жом вводят и отмытые частицы мезги. В среднем выход сушеного жома составляет 4,5-5,0 % массы корнеплодов, из 100 кг которой в жом переходит 5,5 кг сухих веществ (0,5 кг растворимых несахаров и 5 кг мякоти).

Полученную при прессовании жома прессовую воду вновь используют в диффузионных аппаратах.

Основной продукт диффузии - диффузионный сок представля­ет собой мутную жидкость, быстротемнеющую на воздухе. Он имеет слабокислую реакцию. Кроме сахарозы и других сахаров в нем содержатся и растворимые несахара неорганического и органического происхождения. Чистота диффузионного сока 82-88 %, и зависит она от качества перерабатываемых корнеплодов.

Технологическая схема производства диффузионного сока приведена на рисунке 1.

 

 

Рис.1. Схема основных технологических процессов свеклосахарного производства: а - от сырья до получения диффузионного сока

 

а

 

Продолжение рисунка 1

 

Продолжение рисунка 1

 

Рис.1. в – от сульфитации до сахарного песка

Очистка диффузионного сока.

Лишь в результате многoкратной очистки диффузионного сока из него удается выкристаллизовать чистую сахарозу. Сок очищают в результате химических процессов, тепловых воздействий, явлений сорбции и др., используя следующие технологические приемы: предварительную и основную дефекацию, I и II сатурацию, сульфитацию и контрольную фильтрацию сока.

Первый этап очистки разделяют на предварительную дефекацию и основную дефекацию. Суть его заключается в обработке сока известью. Вводимая в сок известь в виде Са(ОН)2 вступает в реакцию с несахарами. Ионы Са, соединяясь с кислотами (щавелевой, лимонной и др.), образуют нерастворимые соли, выпадающие в осадок. Гидроксильные ионы (ОН)2 реагируют с соединениями алюминия, магния и железа, образуя гидроокиси данных металлов. Кроме того, белки, находящиеся в соке в виде крупных мицелл, тоже коагулируют. Таким образом, значительная часть несахаров выпадает в осадок.

Основная дефекация имеет две ступени: холодную (температура до 50 °C) и горячую (температура 85-90 °C). Ее осуществляют в аппаратах - преддефекаторе и дефекаторах. Холодная длится 20-30 мин, горячая - 15.

В процессе дефекации сок дважды обрабатывается известковым молоком. Общее количество активной извести, используемой на очистку диффузионного сока, составляет 2,2-2,5 % СаО. Ее получают непосредственно на заводе обжигом известнякового камня, содержащего не менее 93 % карбоната кальция и не более 2,5 % карбоната магния. Перед обжигом известняковый камень дробят на куски размером 80-200 мм. Для сжигания пользуются коксом или антрацитом. Гашение извести и приготовление известкового молока производят на специальной установке. При обжиге извести в печи получают и сатурационный газ.

Вслед за дефекацией диффузионный сок со всеми включениями, которые он приобрел при дефекации, подвергается сатурации (насыщению). Ее назначение - удалить из сока как растворенную, так и связанную известь и тем самым получить более очищенный сок. Сатурацию проводят, вводя в сок сатурационный газ, получаемый в печи при обжиге известкового камня. Очищенный газ в основном состоит из диоксида углерода. При разбрызгивании сока в сатураторе пропускаемый сатурационный газ, соединяясь с водой, образует угольную кислоту Н2СОз, вступающую в реакцию с гидроксидом кальция Са(ОН)2. В результате этой реакции получается выпадающий в осадок карбонат кальция СаСО3. Дальнейшая очистка сока при сатурации происходит и потому, что образующийся карбонат кальция активно поглощает органические несахара, придающие окраску соку.

Сатурацию проводят дважды. После каждой сок фильтруют на фильтропрессах или в вакуум - фильтрах. Обрабатывают сок при температуре 90-100 °С. В результате сатурации чистота сока достигает 91-93 %, а содержание сахарозы -13-14 %.

В результате сатурации получают два продукта: более очищенный диффузионный сок и фильтрованный осадок (дефекационная грязь). Последний на 75-80 % состоит из карбоната кальция и на 20-25 % - из органических и минеральных несахаров. Остается в нем и некоторое количество сахарозы (0,10-0,15 % массы свеклы), а также сухой фильтрационный осадок (5-6 % массы свеклы). Его используют в качестве удобрения и при известковании кислых почв.

Заключительный этап очистки диффузионного сока - обработка его диоксидом серы, т.е. сульфитация. При пропускании последнего в сульфитаторе через разбрызгиваемый сок образуется сернистая кислота. Она восстанавливает низкомолекулярные красящие вещества и обесцвечивает их. Кроме того, в результате сульфитации снижается щелочность сока и в дальнейшем облегчается процесс кристаллизации сахара.

Для получения диоксида серы сжигают в печи комовую серу.

Получаемый из серы сульфационный газ состоит на 10-15 % из ди­оксида серы и 85-90 % воздуха.

Сгущение и выпаривание сока.

Для получения кристаллов сахара необходимо сок довести до перенасыщенного состояния. Этого достигают постепенно, удаляя часть воды из сока выпариванием. Сначала выпаривание ведут в выпарной установке, а затем в вакуум - аппаратах. Обогревают аппараты паром. В выпарных аппаратах содержание сухих веществ в сиропе (соке) доводят до 65-70 %, а в ваку­ум - аппаратах - до 92-93 %. Применяя вакуум, можно избежать карамелизации сахара, так как выпарка идет при температуре до 80 °С.

В результате уваривания сиропа начинается кристаллизация сахара. Сироп, называемый утфелем, представляет собой густую вязкую массу, состоящую из кристаллов сахара и межкристальной жидкости. Для ускорения образования кристаллов в вакуум-аппарат вносят небольшое (50-100 г) количество сахарной пудры.

I утфель направляют в центрифуги для отделения кристаллов от жидкой части - зеленой патоки. Кристаллы сахара, оставшиеся на сетчатой поверхности барабана центрифуги, промывают горячей водой и паром (пробеливают). При этом часть кристаллов сахара растворяется. Выходя из центрифуги, они имеют влажность 0,5-0,6 %, и их направляют на досушивание на барабанных сушилках до стандартной влажности. Образующийся после пробеливания кристаллов сахара раствор, состоящий из сахарозы и остатков патоки, называют белой патокой. Ее направляют снова в вакуум-аппараты I утфеля.

Отделенную от кристаллов зеленую патоку направляют в вакуум - аппарат для уваривания II утфеля. Однако центрифугирование II утфеля дает сахар желтого цвета, так называемый «желтый сахар», который возвращают в производство, растворяя в соке после II сатурации. Этот процесс называют клеровкой. Кристаллизуют сахар и в вакуум - аппарате III утфеля, тоже дающего желтый сахар.

Оттек утфеля последней кристаллизации дает продукт, именуемый мелассой, в которой находятся почти все несахара. Ее чистота порядка 56-62 %. Выход ее составляет 4,5-5,5 % массы переработанной свеклы. Меласса - ценный кормовой продукт (1 т мелассы содержит 770 корм. ед.), используемый в ряде отраслей пищевой, комбикормовой промышленности и многих бродильных производствах. Высушенный сахар хранят в сухих складах.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: