Закон независимого комбинирования, или третий закон Менделя

Изучение Менделем наследования од­ной пары аллелей дало возможность установить ряд важных генетических закономерностей: явление доми­нирования, неизменность рецессивных аллелей у гибри­дов, расщепление потомства гибридов в отношении 3:1, а также предположить, что гаметы генетически чисты, т. е. содержат только один ген из аллельнои пары. Одна­ко организмы различаются по многим генам. Устано­вить закономерности наследования двух пар альтерна­тивных признаков и более можно путем дигибридного или полигибридного скрещивания, т.е. скрещивание родительских форм, различающихся по двум парам признаков.

Для дигибридного скрещивания Мендель взял гомо­зиготные растения гороха, отличающиеся по двум показателям — окраски семян (желтые, зеленые) и формы семян (гладкие, морщинистые). Доминантные признаки — желтая окраска (А) и гладкая форма (В) семян. Каж­дое растение образует один сорт гамет по изучаемым аллелям: При слиянии гамет все потомство будет единообразным:

 

 

 

 

 

 

 

 

 

Решетка Паннета

 

 

 

АВ

Аb

аВ

аb

 

 

АВ

AABB

AABb

AaBB

AaBB

 

 

Аb

AABb

AAbb

AABb

Aabb

 

 

аВ

AaBB

AABb

AaBB

aaBb

 

 

аb

AaBB

Aabb

aaBb

aabb

 

 

 

 

 

 

 

 

При образовании гамет у гибрида из каждой пары аллельных генов в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материнских хромосом в I делении мейоза ген А может попасть в одну гамету с геном В или с геном Ь. Точно так же ген а может оказаться в одной гамете с геном В или с геном Ь. Поэтому у гибрида образуются четыре типа гамет: АВ, Ав, аВ, ав. Во время оплодотворения каждая из четырех типов гамет одного организма слу­чайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Пеннета, в которой по горизонтали выписываются гаметы одного родителя, по вертикали — гаметы другого родителя. В квадратики вносятся генотипы зигот, образующиеся при слиянии гамет.

 

Легко подсчитать, что по фенотипу потомство делит­ся на 4 группы: 9 желтых гладких, 3 желтых морщини­стых, 3 зеленых гладких, 1 желтая морщинистая (9:3:3:1). Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение гладких семян к морщинистым для каждой пары равно 3:1. Это можно выразить алгебраически как квадрат двучлена

(3+1)² = 3² +2·3+1² или 9+3+3+1

Таким образом, при дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещива­нии, т. е. независимо от другой пары признаков.

При оплодотворении гаметы соединяются по прави­лам случайных сочетаний, но с равной вероятностью для каждой. В образующихся зиготах возникают раз­личные комбинации генов. Теперь можно сформулировать третий закон Менде­ля: при скрещивании двух гомозиготных особей, отлича­ющихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Законы Менделя служат основой для анализа рас­щепления в более сложных случаях: при различиях осо­бей по трем, четырем парам признаков и более.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: