Теоремы о числе решений линейного диофантового уравнения

Глава 1. Теория уравнений с двумя переменными в целых числах.

1. Историческая справка _______________________________________5

1.1 Теоремы о числе решений линейных диофантовых уравнений___6

1.2 Алгоритм решения уравнения в целых числах_________________ 6

1.3 Способы решения уравнений_______________________________  7

Глава 2. Применение способов решения уравнений.

1. Решение задач_____________________________________________ 8

2.1 Решение задач с помощью алгоритма Евклида________________ 8

2.2 Способ перебора вариантов________________________________ 9

2.3 Метод разложения на множители___________________________ 9

2.4 Метод остатков__________________________________________  12

2. Задачи экзаменационного уровня___________________________  13

Заключение________________________________________________  16

Список используемой литературы_____________________________ 17

                                        «Кто управляет числами,

                                              Тот управляет миром»

                                                                    Пифагор.

 

                     Введение.

Анализ ситуации:    Диофантовы уравнения это актуальная в наше время тема, т. к. решение уравнений, неравенств, задач, сводящихся к решению уравнений в целых числах с помощью оценок для переменных, встречается в различных математических сборниках и сборниках ЕГЭ.

Изучив разные способы решения квадратного уравнения с одной переменной на уроках, нам было интересно разобраться, а как решаются уравнения с двумя переменными. Такие задания встречаются на олимпиадах и в материалах ЕГЭ.

В этом учебном году одиннадцатиклассникам предстоит сдавать Единый государственный экзамен по математике, где КИМы  составлены по новой структуре. Нет части «А», но добавлены задания в часть «В» и часть «С». Составители объясняют добавление С6 тем, что для поступления в технический ВУЗ нужно уметь решать задания такого  высокого уровня сложности.

 

Проблема:  Решая примерные варианты заданий ЕГЭ, мы заметили, что чаще всего встречаются в С6 задания на решение уравнений первой и второй степени в целых числах. Но мы не знаем способы решения таких уравнений. В связи с этим возникла необходимость изучить теорию таких уравнений и алгоритм их решения.

 

Цель: Освоить способ решения уравнений с двумя неизвестными первой и второй степени в целых числах.

 

Задачи: 1) Изучить учебную и справочную литературу;

2) Собрать теоретический материал по способам решения уравнений;

3) Разобрать алгоритм решения уравнений данного вида;

 

4) Описать способ решения.

 

5) Рассмотреть ряд примеров с применением данного приема.

 

6) Решить уравнения с двумя переменными в целых числах из              

                     материалов ЕГЭ-2010 С6.

 

 

 Объект исследования: Решение уравнений

 

 

  Предмет исследования: Уравнения с двумя переменными в целых числах.

 

 

Гипотеза:   Данная тема имеет большое прикладное значение. В школьном курсе математики подробно изучаются уравнения с одной переменной и различные способы их решения. Потребности учебного процесса требуют, чтобы ученики знали и умели решать простейшие уравнения с двумя переменными. Поэтому повышенное внимание к этой теме не только оправдано, но и является актуальной в школьном курсе математики.

Данная работа может быть использована для изучения данной темы на факультативных занятиях учениками, при подготовке к выпускным и вступительным экзаменам. Мы надеемся, что наш материал поможет старшеклассникам научиться решать уравнения такого вида.

 

       Глава 1. Теория уравнений с двумя переменными в целых числах.

   1. Историческая справка.

 Диофант и история диофантовых уравнений.

Решение уравнений в целых числах является одной из древнейших математических задач. Наибольшего расцвета эта область математики достигла в Древней Греции. Основным источником, дошедшим до нашего времени, является произведение Диофанта – «Арифметика». Диофант суммировал и расширил накопленный до него опыт решения неопределенных уравнений в целых числах.

История сохранила нам мало черт биографии замечательного александрийского ученого-алгебраиста Диофанта. По некоторым данным Диофант жил до 364 года н.э. Достоверно известно лишь своеобразное жизнеописание Диофанта, которое по преданию было высечено на его надгробии и представляло задачу-головоломку:

«Бог ниспослал ему быть мальчиком шестую часть жизни; добавив к сему двенадцатую часть, Он покрыл его щеки пушком; после седьмой части Он зажег ему свет супружества и через пять лет после вступления в брак даровал ему сына. Увы! Несчастный поздний ребенок, достигнув меры половины полной жизни отца, он был унесен безжалостным роком. Через четыре года, утешая постигшее его горе наукой о числах, он [Диофант] завершил свою жизнь» (примерно 84 года).

Эта головоломка служит примером тех задач, которые решал Диофант. Он специализировался на решении задач в целых числах. Такие задачи в настоящее время известны под названием диофантовых.

Наиболее известной, решенной Диофантом, является задача «о разложении на два квадрата». Ее эквивалентом является известная всем теорема Пифагора. Эта теорема была известна в Вавилонии, возможно ее знали и в Древнем Египте, но впервые она была доказана, в пифагорейской школе. Так называлась группа интересующихся математикой философов по имени основателя школы Пифагора (ок. 580-500г. до н.э.)

Жизнь и деятельность Диофанта протекала в Александрии, он собирал и решал известные и придумывал новые задачи. Позднее он объединил их в большом труде под названием «Арифметика». Из тринадцати книг, входивших в состав «Арифметики», только шесть сохранились до Средних веков и стали источником вдохновения для математиков эпохи Возрождения.

 

Теоремы о числе решений линейного диофантового уравнения.

Приведем здесь формулировки теорем, на основании которых может быть составлен алгоритм решения неопределенных уравнений первой степени от двух переменных в целых числах.

Теорема 1.  Если в уравнении , , то уравнение имеет, по крайней мере, одно решение.

Теорема 2. Если в уравнении ,  и с не делится на , то уравнение целых решений не имеет.

Теорема 3.    Если в уравнении ,  и , то оно равносильно уравнению , в котором .

Теорема 4. Если в уравнении , , то все целые решения этого уравнения заключены в формулах:

                    

где х0, у0 – целое решение уравнения ,  - любое целое число.

 

         1.2. Алгоритм решения уравнения в целых числах.

Сформулированные теоремы позволяют составить следующий алгоритм решения в целых числах уравнения вида .

1. Найти наибольший общий делитель чисел a и b,

если  и с не делится на , то уравнение целых решений не имеет;

если  и , то

2. Разделить почленно уравнение  на , получив при этом уравнение , в котором .

3. Найти целое решение (х0, у0) уравнения  путем представления 1 как линейной комбинации чисел  и ;

4. Составить общую формулу целых решений данного уравнения

                                             

где х0, у0 – целое решение уравнения ,  - любое целое число.

                         


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: