Аналоговое исполнение

К преимуществам этой категории аппаратных средств реализации ИНС следует отнести высокие скорости обработки информации и возможности высокой плотности расположения элементов. Однако тут же дают о себе знать и недостатки — сложность в получении высокой точности, обусловленная различиями в компонентах из-за системы допусков при производстве, различные характеры тепловых и электромагнитных помех, искажающих полезный сигнал. Еще одной проблемой является сложность в долгосрочном хранении весовых коэффициентов и организации операций аналогового умножения.

В качестве примера можно привести разработку Intel — 8017NW ETANN (Electrically Trainable Analogue Neural Networks), содержащий 64 нейрона и 10280 весовых коэффициентов. ИНС, реализованная в продукте Synaptics Silicon Retina, обрабатывает изображение, моделируя процессы, происходящие в сетчатке глаза. Подход заключается в создании аналогового исполнения, где ИНС пытается наиболее точно воспроизвести поведение биологических нейронов. Реализованные аналоговые нейросети представляют набор компонентов, размеры которых меньше размеров биологического нейрона, и предполагается, что вышеназванные недостатки компенсируются взаимосвязями между аналоговыми нейронами.

Гибридное исполнение

Как понятно из названия, эта категория представляет собой комплекс вышерассмотренных систем. Разработчики таких проектов пытаются получить от таких систем преимущества аналогового и цифрового исполнений. По большей части это достигается путем связи между устройствами и датчиками посредством цифровой составляющей, а обработка полностью или частично реализуется аналоговыми методами.

В качестве примера приведем чип Bellcore CLNN-32, который хранит весовые коэффициенты в цифровой форме, а производит моделирование ИНС, используя аналоговую схему. Существуют проекты, в которых весовые коэффициенты хранятся в конденсаторах, периодически подзаряжающихся от внутренних источников тока. Также примерами гибридных систем могут служить SU3232 Synapse и NU32 Neuron, разработанные в лабораториях Neural Semiconductor, и RN-100, представленный Ricoh.

Пути развития

В дальнейшем развитие аппаратных средств на основе ИНС может пойти следующими путями:

1. Путем усовершенствования методов для реализации нейросетевых методов на FPGA (Field Programmable Gate Array, ПЛИС, Программируемая Логическая Интегральная Схема), VLSI (Very Large Scale Integration, СБИС, уровень интеграции, при котором количество элементов на одной микросхеме исчисляется тысячами и миллионами).

2. Благодаря исследованиям и внедрению инновационных алгоритмов построения ИНС, которые осуществимы аппаратными средствами.

3. Разработкой промышленного стандарта нейросетевых алгоритмов высокого уровня в промышленности.

Первые два пункта более-менее понятны, поясним, что подразумевается в последнем. Разработанные методы должны легко адаптироваться к нуждам промышленности, достаточно просто реализовываться. Но для этого необходимо специализированное ПО с полным набором нейросетевых функций (для цифрового, аналогового и гибридного исполнений). Немаловажно и исследование методов внедрения ИНС в уже существующие системы, создания на их основе гетерогенных систем. Вообще говоря, цепь обработки информации может начинаться с аналоговых датчиков и заканчиваться аналоговыми исполнительными устройствами, или система может быть полностью цифровой, в любом случае необходима оптимизация на уровне системы, а не отдельных ее составляющих.

А согласно указанным направлениям развития, все более вероятен переход на новые технологии. Отметим, что Япония по скорости внедрения новых интеллектуальных технологий шагает далеко впереди, обогнав как страны СНГ, так и страны Европы. Особенно это хорошо заметно в области бытовой электроники, где чипы на основе нейронных сетей устанавливаются в микроволновые печи (Sharp), пылесосы, фото- и видеокамеры.

Приведем краткий список фирм, уже применяющих ИНС в их аппаратном исполнении: Ericsson (Англия и Швеция), Philips Research (Нидерланды), Siemens AG Munich, Siemens/Nixdorf Bonn, 3M Laboratories (Europe) GmbH Neuss, XIONICS Document Technologies GmbH Dortmund, Robert Bosch GmbH Reutlingen, Spectrum Microelectronics Siek, Fiat, Domain Dynamics Ltd.

Применение

Ниже приведен далеко не полный список возможных и перспективных аппаратных реализаций и сфер применения:

· Системы коммуникаций, модуляторы/демодуляторы, интеллектуальные антенны, полупроводники для применения в космической отрасли.

· Идентификация объектов, сжатие изображения, HDTV, медицинский и биометрический анализ образов, системы обработки теплового изображения, анализ материалов.

· Анализ человеческого характера, идентификация говорящего, распознавание речи, распознавание рукописного текста.

· Информационный поиск, исследовательский анализ данных, проверка качества, изучение функций, автоматический контроль и интеллектуальное управление, экономическое прогнозирование, прогнозирование потребления электричества, автоматическая проверка работоспособности VLSI и WSI.

Для оценки производительности нейровычислителей используются следующие показатели:

· CUPS (connections update per second) - число измененных значений весов в секунду (оценивает скорость обучения).

· CPS (connections per second) - число соединений (умножений с накоплением) в секунду (оценивает производительность).

· CPSPW = CPS/Nw, где Nw - число синапсов в нейроне.

· CPPS - число соединений примитовов в секунду, CPPS=CPS*Bw*Bs, где Bw, Bs - разрядность весов и синапсов.

· MMAC - миллионов умножений с накоплением в секунду.

Ориентация в выполнении нейросетевых операций обуславливает с одной стороны повышение скоростей обмена между памятью и параллельными арифметическими устройствами, а с другой стороны уменьшение времени весового суммирования (умножения и накопления) за счет применения фиксированного набора команд типа регистр-регистр.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: