Гравиметрические работы

Гравиразведка масштаба 1:5000 по сети, 50х50 м выполнялась в течение 2000-2003 г.г. на участке «Киенг», по предварительно подготовленной сети пунктов наблюдений гравиметрами «L&R» модели D.

В 2000г. работы на площади 20 кв.км (участок «Киенг») проводились гравиметрами ГНУ-КС, технические параметры которых не соответствовали проектным требованиям. После ввода в эксплуатацию в 2001г. высокоточных гравиметров «L&R» модели D, было принято решение о повторном проведении гравиметрических работ на 20 кв.км с гравиметрами «L&R» модели D.                        .

Гравиметрические работы проводились по трехступенчатой системе с предварительной разбивкой каркасной опорной сети (КОС), заполняющей опорной сети (ЗОС) и рядовой съёмкой.

Целью гравиметрических работ являлось картирование структур карбонатного комплекса, тектонических нарушений, ослабленных зон, участков разуплотнения пород и поиски кимберлитовых тел.

Участок «Киенг». Опорная гравиметрическая сеть на участке «Киенг» создавалась по трехступенчатой системе - ОГП II класса – центральные ОГП – каркасная сеть – заполняющая сеть. Значения поля силы тяжести переданы от опорного гравиметрического пункта II класса «Айхал» на 4 центральных опорных пункта, расположенных на площади работ равномерно. Увязка выполнена гравиметрами «L&R» модели D. Производственным транспортом служил вертолет МИ-8. Кратность наблюдений на одном пункте составила 4.8. Среднеквадратическая погрешность единичного наблюдения составила ±0.020 мГал, точность создания сети центральных опорных пунктов составила ± 0.009 мГал.

Каркасная опорная сеть развивалась от центральных ОГП. Передвижение между пунктами каркасной опорной сети выполнялось на вездеходах. Продолжительность рейсов, как правило, не превышала 2.0-2.5 часов. Методика наблюдений трехкратная, 3-4-мя операторами с одним прибором каждый. Всего выставлено 39 пунктов каркасной опорной сети (или 1 пункт на 2.9 кв.км.). Среднеквадратическая погрешность единичного наблюдения составила ± 0.032 мГал, точность разбивки каркасной опорной сети составила ± 0.013 мГал.

Значения наблюденного поля силы тяжести на пункты заполняющей опорной сети передавались от каркасных опорных пунктов. Методика наблюдений двукратная, одним-тремя операторами с одним прибором каждый. Передвижение операторов с приборами пешее. Продолжительность рейсов не превышала 2.0-2.5 часов. Заполняющая опорная сеть разбивалась по магистралям шагом 200 м. Всего выставлено 369 пунктов заполняющей опорной сети. Среднеквадратическая погрешность единичного наблюдения составила ± 0.027 мГал, точность разбивки заполняющей опорной сети составила ±0.013 мГал.

Среднеквадратическая погрешность создания опорной сети по участку составила ±0.018 мГал (Инструкция по гравиразведке,§77).

Рядовая съемка выполнялась по однократной методике одним оператором с одним прибором. Рейсы рядовой сети начинались и заканчивались на пунктах каркасной и заполняющей опорной сети. Продолжительность рядовых рейсов, как правило, не превышала 3.0 часов. Дрейф нуль-пункта не превышал 0.03 – 0.05 мГал/час. Контрольные наблюдения проводились путем включения в текущий рейс пунктов предыдущих рейсов.

Гравиметрическая съемка как на опорной, так и на рядовой сети проводилась в летне-осенний период при отсутствии снежного покрова или при весьма малой его мощности. Поэтому поправка за мощность снежного покрова не вводилась.

   4.1.2 Магниторазведка

    Наземная профильная магнитная съёмка выполнена по предварительно подготовленным пунктам наблюдений на участках «Киенг» (2001-2002 г.г), Целью магниторазведки являлось выделение аномалий магнитного поля, обусловленных кимберлитовыми телами, зон тектонических нарушений, перспективных на рудопроявление, даек и пластовых интрузий основных пород трапповой формации. Используемая аппаратура - магнитометры GSM-19, POS-1, POS -2. Передвижение между пунктами наблюдений пешее. Объемы работ приведены в таблице 4.1.1

Для приведения всех измеренных на местности значений магнитного поля к единому уровню рядовые наблюдения начинались и заканчивались на контрольных пунктах (КП). Для учета вариаций геомагнитного поля использовалась магнитовариационная станция (МВС), развернутая непосредственно на участке работ вблизи КП в спокойном магнитном поле. В качестве вариационной станции использовались магнитометр GSМ-19 с регистрацией поля в автоматическом режиме через 1 минуту. Включение МВС опережало начало съемочных работ на 1 час, для исключения интервала недостоверных показаний МВС. Ежедневно в начале и конце рабочего цикла осуществлялась синхронизация по времени МВС и магнитометров, задействованных на съемке. В период магнитных бурь съемка не проводилась. Поправки за геомагнитные вариации вводились в процессе полевой камеральной обработки. Учет за вариации магнитного поля Земли производился при помощи пакета программ «Geosoft». В полевых условиях для оперативного контроля за качеством получаемого материала и выделения перспективных аномалий для последующей детализации и передачи под заверку бурением карта строилась изодинам ∆Та в условных координатах. Построение карт магнитного поля производилось при помощи пакета программ «Geosoft»(приложение 46).

Участок «Киенг». Сеть наблюдений 50х25 м. Общий объем выполненных магниторазведочных работ составил 112.5 км2 или 2257 пог. км. Во время измерений магнитного поля датчики магнитометров ориентировались строго в одном направлении, штанги датчиков - вертикально. В течение двух полевых сезонов измерения производились относительно четырех контрольных пунктов (КП). Магнитовариационные станции, как правило, размещались неподалеку (35м) от КП. Все КП последовательно увязывались между собой, по мере отработки участка и выставления очередного КП производилась его увязка по уровню относительно предыдущего. Таким образом, все измерения за два полевых сезона приведены к уровню КП –1. Перед началом каждого рейса и по его окончании на КП производилась серия наблюдений. Детализационные работы выполнены в объеме 17.2 пог. км по сети 25х12.5 м.

Контрольные измерения производились путем отдельных контрольных рейсов, всего за два сезона выполнено 4583 контрольных наблюдений, что составляет 5.1% от общего числа рядовых пунктов. Среднеквадратическая погрешность съемки составила ±0.8 нТл при проектной ±2 нТл.

Таблица 4.1.2.1

Виды работ и точность магниторазведочных работ

 

 

№ п/п

 

Виды работ

 

Объемы по годам

2001 год 2002год За два года
  1   2   3 4     Участок «Киенг» Количество рядовых пунктов наблюдений Количество контрольных наблюдений Процент контрольных наблюдений Погрешность измерений проектная полученная   56000   2874   5.1%   ±2 нТл ±1 нТл   34146   1709   5%   ±2 нТл ±0.6 нТл   90146   4583   5.1%   ±2 нТл ±0.8нТл

Электроразведка

 

Проектом предусматривалось выполнение электроразведки в модификации МПП с петлей 5х5м. Однако в ходе выполнения работ в опытном варианте на трубке Долгожданная выявлены технические недоработки как самой аппаратуры Импульс-СЛ, так и программного обеспечения по обработке материалов, вследствие чего принято решение ТС АмГРЭ о замене ТЭМС на метод радиоэлектромагнитного профилирования (РЭМП) с аппаратурой ИПИ-1000 (Лаборатория электромагнитных методов ЗАО «Техноэкос», С.-Петербург). Работы в 2000 году на участке «Киенг» выполнялись измерения методом РЭМП по предварительно подготовленным пунктам наблюдений по сети 50х25м установкой MN=25м. Измерения выполнялись аппаратурой ИПИ-1000 – «измеритель поверхностного импеданса». Для измерения составляющей электрического поля применялись электрические антенны в заземленном и незаземленном вариантах; для измерения магнитной составляющей – рамочной магнитной антенной.

Непосредственно перед началом полевых работ выполнен комплекс наблюдений, включающий в себя пеленгацию радиостанций, выбор рабочей частоты, определение режима работы радиостанции, выбор электрической антенны. По результатам таких измерений на участке «Киенг» в качестве рабочей была выбрана частота 50 кГц (радиостанция г. Иркутск) Кроме данной радиостанции, фиксировался сигнал еще на двух частотах – 22.3 кГц (Австралия) и 23.4 кГц (Гавайи). Однако две последние радиостанции в связи с превышением разности между пеленгом и азимутом профилей более 70 градусов (инструктивная разность между пеленгом и азимутом профилей не более 30 градусов) не использовались.

Глубинность метода, согласно инструкции, от первых метров до 100-150м. Наибольшие глубины достигаются при благоприятном геоэлектрическом разрезе – отсутствие проводящих образований в верхней части разреза, а также при использовании радиосигнала сверх длинноволнового диапазона – от 10 до 30 кГц. На участке «Киенг» работы выполнялись в длинноволновом диапазоне, глубинность таких измерений несколько ниже.

 

В сезоне 2000 года на площади 20 км2 выполнены электроразведочные работы методом радиоэлектромагнитного профилирования (РЭМП) с аппаратурой ИПИ-1000 по сети 50х25м установкой MN=25м (20км2) с целью выявления аномалий, связанных с кимберлитовым магматизмом. В ходе выполнения работ выявлена недостаточная чувствительность магнитной антенны, амплитуда сигнала зачастую недостаточна для настройки прибора. Амплитуда регистрируемого сигнала в разные дни была различна, в течение дня она также изменялась. Измерения часто выполнялись «на пределе чувствительности», т.е. на минимальном уровне «общего ослабления». По результатам приемки полевых материалов полевого сезона 2000 года специалистами ОПГ АК «АЛРОСА» учитывая, что электроразведка методом РЭМП и используемая в этих целях аппаратура «ИПИ-1000» носит опытный характер, рекомендовано в дальнейшем вернуться к испытанным и показавшим свою эффективность электроразведочным методам. Электроразведка МПП была заменена электропрофилированием в модификации срединных градиентов (СГ). Перед началом работ были проведены опытные работы на участке «Киенг», в районе трубки «Ленинградская», для решения следующих задач:

- определение возможности применения метода СГ для поисков низкоомных объектов, предположительно отвечающим кимберлитовым телам;

- определение стабильности работы аппаратуры СЭР-1 на различных частотах;

- подбор оптимальной рабочей частоты.

Электроразведка методом срединного градиента выполнена в 2001 году с использованием аппаратуры СЭР-1, размерами питающей линии AB=3000 м и заземленной приемной установки MN = 25 м, на частотах 4.88, 19.5, 78, 625 и 1250 Гц, а также с использованием электрической антенны на частоте 625 Гц.

Наблюдения выполнены на площади 0.5 кв. км над тр. Ленинградская. В явной форме объект не выделился, при наблюдениях с электрическими антеннами на частоте 625 Гц были выделены аномалии непосредственно в районе расположения трубки. Наблюдениями на частотах 1250 и 625 Гц с использованием заземленной приемной линии выделяется зона повышенных сопротивлений, в первом приближении соответствующая области развития кимберлитовых трубок, даек основного состава, а также интенсивных тектонических процессов. Однако следует считать, что в целом результаты наблюдений малоубедительны. Аналогичные измерения на частотах 4.88, 19 и 78 Гц были забракованы. Причиной такого результата, по мнению исполнителей, явилась недостаточно корректная настройка разных комплектов аппаратуры СЭР фирмой-изготовителем на вышеперечисленных частотах. После этого были выполнены работы на площади 6 кв. км с целью полного изучения района локализации эталонного объекта. Измерения проводились с электрическими антеннами на частоте 625 Гц в трехкомпонентном режиме – т.е. производились измерения X-, Y- и Z-составляющих электрического поля. Методически измерения компонент электрического поля осуществлялись при соответствующей ориентации антенны – вдоль, поперек профиля наблюдений, или же вертикально. По результатам работ сделан вывод о том, что наблюдения методом СГ как с заземленными приемными установками, так и с незаземленными, не позволяют уверенно выделять кимберлитовые тела.

В 2002 года был выполнен еще один цикл наблюдений методом СГ на том же объекте, отработан участок из 10 профилей (ПР 162.0 – ПР 166.5) длиной 1000 м каждый (МГ 5 – МГ 6), в пределах которого расположена трубка «Ленинградская». Работы выполнялись на частоте 1.22 Гц, кроме того, по профилю 163.0 измерения DU выполнялись на всех частотах генератора - 1.22, 2.44, 4.88, 9.76, 19.5, 22.5, 78.1, 156, 312, 470, 625, 1250 и 2500 Гц.

Длина питающей линии АВ равна 3000 м, заземленной приемной линии МN – 25 м. Сопротивление незаземленной линии АВ - 30 Ом, заземленной – 585 –593 Ом (на разных частотах), сопротивление приемной линии – около 2 Ом. Сила тока в питающей линии – 200 мА.

В ходе работ часто отмечалась нестабильность измерений DU - резкие скачки значений, разбросы величины DU при повторных измерениях, достигающие 5-10 мВ, что сопоставимо с уровнем измеряемого сигнала (1-11 мВ).

При включении тока в генераторной линии (частоты 1.22 – 470 Гц), уровень DU либо оставался прежним, либо изменялся незначительно для столь близкого расположения приемной линии относительно питающей, и незакономерно – т.е. в большую или меньшую стороны. Поскольку время запуска генератора на низких частотах довольно большое – около минуты, можно предположить, что данные изменения уровня DU являются изменениями уровня помехи во времени, а не отражением работы генераторной линии, хотя взаимодействие сигналов могло оказаться каким-то еще более сложным. На частотах 625 Гц и выше в приемной линии появлялся достаточно уверенный сигнал величиной более 40 мВ (на профиле, соседнем с генераторной линией) при очевидном отсутствии помехи.

Контрольные наблюдения по профилю 163.0 (частота 625 Гц), выполненные через 5 дней после основных, показали хорошую сходимость полученных значений rк, в то же время контрольные наблюдения на частоте 1.22 Гц по этому же профилю, не имели ничего общего с выполненными ранее.

Исследования выходного сигнала генератора осциллографом показали соответствие как измеренных частот сигнала устанавливаемым, так и величины напряжения - величинам силы тока и сопротивления линии АВ, которые индицируются на дисплее генератора.

При подключении осциллографа к измерительной линии MN при работающей генераторной линии на низких частотах обнаружилось, что полезный сигнал очень слабый - порядка 1 мВ. Для выяснения возможного несогласования частот комплект аппаратуры был исследован в ГΜЛ АмГРЭ, работа генераторов (Г-50) оценена как достаточно стабильная, частоты генератора и приемника соответствовали паспортным величинам.

По результатам проведенных работ методом ЭП-СГ на тр. Ленинградская можно отметить:

1. Проведенные измерения DU на частотах 1.22 – 470 Гц при работе методом СГ фиксировали в основном уровень помехи, изменяющейся в пространстве и времени с невыясненной закономерностью. Доля полезного сигнала ничтожна мала. Помехи, очевидно, обусловлены наличием энергоустановок г. Удачный и карьера на трубке «Удачная», расположенных примерно в 14 км от участка работ

2. Измерения полезного сигнала DU при отсутствии помехи можно выполнять на частоте 625 Гц и выше. Однако по результатам работ по методике СГ на данной частоте и выше не отражается эффект от низкоомных кимберлитовых тел, уверенно выделяемых по материалам дипольного профилирования.

3. Приемники и генераторы аппаратуры СЭР-1 соответствовали друг другу по частотным характеристикам, что подтверждено проверкой, выполненной в ГМЛ АмГРЭ.

4. Перед постановкой работ методом СГ на других участках необходимо выполнить наблюдения за наличием помех и выяснить возможности проведения работ на низких частотах.

Электроразведка ДЭП. По результатам опытных электроразведочных работ на участке «Киенг» в 2001-2003 г.г. электроразведка была выполнена по предварительно подготовленным пунктам наблюдений по сети 50х25м методом дипольного электропрофилирования. Используемая аппаратура СЭР-1, кроме того, использовались генераторы ЭРА-625, установка А25В75M25N, коэффициент используемой установки равен 4710 м. Установка ориентировалась электродом А всегда в сторону возрастания нумерации пикетов (т.е. на северо-восток). Точка записи ρк при предварительной обработке материалов во время производства полевых работ условно относилась к электроду М.

 Для выбора оптимальных параметров съемки было выполнено дипольное профилирование с аппаратурой СЭР-1 на частотах 1.22 Гц и 625 Гц и с генератором «ЭРА-625» на частоте 625 Гц. Измерения DU проводились одним приемником из комплекта СЭР-1. При этом было установлено:

1 При отсутствии тока в генераторной линии в приемной линии присутствовала помеха интенсивностью 4-5 мВ (работы проводились в ночное время).

2 При подаче тока силой 70-100 мА в питающую линию в приемной линии появляется сигнал величиной 40 мВ и более, т.е. превышающий уровень помех, по меньшей мере, на порядок.

3 Аппаратура уверенно работала как на частоте 625 Гц, так и на 1.22 Гц, т.е. первоначальный вывод (см. выше) о несоответствии частот генератора и приемника был неверен. Графики rк по результатам работ на той и другой частоте различаются несущественно (амплитуда аномалий rк, определенных на частоте 1.22 Гц, несколько выше), сходимость значений rк, измеренных при токах в генераторной линии, возбужденных с помощью генераторов СЭР-1 и «ЭРА-625», хорошая.

4 В связи с тем, что результаты измерений на частотах 1.22 Гц и 625 Гц практически идентичны, но при этом время измерения DU на частоте 1.22 Гц составляет 40 сек, а на частоте 625 Гц – 1-2 сек, было принято решение в дальнейшем выполнять дипольное профилирование на частоте 625 Гц.

 В процессе измерений значения DU фиксировались в электронном запоминающем устройстве измерителей СЭР-1, по окончании работы на базе отряда данные импортировались в память компьютера в формате *.dat. Сила тока составляла, как правило, 70-75 мА, в редких случаях 30-50 мА, и фиксировалась в журнале записей величины тока вручную. Сверка приемников на идентичность измерений DU производилась ежемесячно специально на выбранном КП. Контрольные измерения выполнялись, как правило, путем включения в рейс отрезков профилей, отработанных ранее, или специальными контрольными рейсами. Обработка материалов сводилась к формированию каталога {ПР, ПК, DU, I} и дальнейшему вычислению кажущегося сопротивления ρк в программе EXCEL.

По результатам электроразведочных работ в полевых условиях строились карты изолиний кажущегося сопротивления ρк в условных координатах (ПР, ПК).

В камеральных условиях значения ρк приводились к центру измерительного диполя (Блох И.М, «Дипольное профилирование», стр. 117-118, §12, М). Построение карт производилось при помощи пакета программ «Geosoft».(приложение 48).

                                                                                                                        Таблица 4.1.3.1

Виды работ и точность электроразведочных работ ДЭП на участке «Киенг»

  № п/п   Виды работ   2001 год

 

2002 год

 

 

2003 год

 

1   Количество наблюдений на рядовых пунктах

 

 

 

34389

   
2 Количество контрольных наблюдений

 

1813

 
3 Процент контроля

 

5.3%

 
4 Относительная ошибка измерений

 

4.5%

 
             

 

5. Камеральные работы и обработка данных на ЭВМ.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: