Пути преодоления дифракционного предела электронной микроскопии

       К настоящему времени электронная микроскопия достигла больших успехов и нашла многочисленные применения. Однако в ряде случаев, о которых кратко было сказано выше, было бы чрезвычайно желательным добиться дальнейшего прогресса в электронной микро­скопии. Это в первую очередь относится к проблеме достижения большей разрешающей способности.

       На пути решения этой краеугольной задачи стоят чрезвычайно серьезные технические трудности, связанные с проблемами создания электронных линз, их взаимного расположения формирования одно­скоростных электронных потоков. Совокупность этих факторов приво­дит в конечном итоге к различного рода искажениям, играющим важ­ную роль при больших увеличениях и приводящим к тому, что практи­чески достигаемое разрешение оказывается хуже предельного.

       По мере приближения электронной микроскопии к своим пре­дельным возможностям все труднее и труднее становится вносить в нее дальнейшие усовершенствования.

       Самые последние достижения в электронной микроскопии осно­ваны на применении новых высоковольтных (V = 100 кв) и сверхвысоко­вакуумных (вакуум 2e-10 мм рт. ст.) приборов. Высоковольтная элек­тронная микроскопия, как показывает опыт, позволяет уменьшить хро­матическую аберрацию электронных линз. В печати сообщается, на­пример, о том, что с помощью нового японского микроскопа SMH-5 мо­гут быть получены фотографии решеток с межплоскостным расстоя­нием ~1 А°. Сообщается также, что на новом электронном микроскопе с ускоряющим напряжением 750 кв получено разрешение, равное 3 А°.

       Рассматриваются возможности применения в электронной мик­роскопии линз из сверхпроводящих сплавов (например, Hi ¾ Zn), кото­рые позволят получить высокие оптические свойства электронных сис­тем и исключительную стабильность полей. Ожидается, что использо­вание специальных линз-фильтров позволит получить новые резуль­таты в отражательной электронной микроскопии. При использовании таких линз в просвечивающем электронном микроскопе удалось суще­ственно улучшить их разрешающую способность.

       В растровых электронных микроскопах просвечивающего типа к настоящему времени достигнута разрешающая способность в 100 А°. Новый эмиссионный микроскоп позволяет получать разрешения дета­лей с размерами от 120 (для фотоэмиссии) до 270 А° (для вторичной эмиссии).

Вызывает интерес сообщение о том, что голландская фирма Philips вносит ряд усовершенствований в микроскоп типа EM-300, кото­рые позволят довести практическую разрешающую способность до теоретического предела (!). Правда, о существе этих усовершенство­ваний пока не сообщается.

Важность проблемы улучшения разрешающей способности в электронной микроскопии, приближение ее к теоретическому пределу стимулировала проведение целого ряда исследований в этой области. Из многочисленных предложений и идей, зачастую остроумных и весьма перспективных, остановимся на идеях, высказанных английским физиком Габором, получивших в последние годы широкое развитие в оптике, радиофизике, акустике, особенно в связи с созданием оптиче­ских квантовых генераторов (лазеров). Речь идет о так называемой голографии, о которой известно сейчас не только специалистам, но и всем тем, кто интересуется новейшими достижениями физики. Вместе с тем не все, наверное, знают, что первые работы Габора по гологра­фии, проведенные еще в «долазерный» период (1948-1951), были поставлены и выполнены именно в связи с задачей повышения разре­шающей способности в электронной микроскопии.

Сущность предлагавшегося метода сводилась к следующему. Монохроматический поток электронов, т.е. поток, содержащий элек­троны с одинаковыми скоростями, освещает объект исследования (по схеме просвечивающего или теневого микроскопа). При этом происхо­дит дифракция электронов на объекте (вспомним волновые свойства электронов!). Обычно в электронном микроскопе пучок, претерпевший дифракцию на объекте, поступает в систему электронных линз, фор­мирующих изображение и обеспечивающих нужное большое увеличение. Однако эти же линзы, как мы уже отмечали, являются ис­точниками трудно устранимых искажений, препятствующих достижению теоретического разрешения. В новом методе предлагалось фиксиро­вать результат дифракции электронов фотографически в виде дифракционной картины и подвергать эту картину последующей обра­ботке с помощью оптических методов, где получение нужных усилений может быть достигнуто с меньшими искажениями. В таком двухступен­чатом процессе получения изображений основное увеличение достигается за счет перехода от «электронных» длин волн к оптиче­ским. При этом следует отметить, что обрабатываемая оптическими методами картина дифракции практически не имеет сходства с объек­том исследования. Однако с помощью светового излучения (видимого) по этой картине в несложном оптическом устройстве можно восстано­вить изображение исследуемого объекта. Для этого источник излучения должен посылать монохроматические когерентные волны, т.е. должен обладать теми свойствами, которые так ярко проявляются у оптических квантовых генераторов.

Заметим, что, образно говоря, в этом двухступенчатом процессе мы фиксируем, «замораживаем» фронт электронных волн и потом вос­производим его вновь в виде фронта световой волны в значительно большем масштабе, используя при этом различие длин волн света и электронов (это соотношение, например, может быть порядка 6000А°/0,030А°» 200000).

В таком «безлинзовом», а потому и не вносящим искажений уве­личении и заключается основное достоинство метода голографии в электронной микроскопии.

К числу новых направлений следует также отнести область мик­роскопии, использующую вместо электронов другие виды микрочастиц, тяжелых по сравнению с электронами. В этом случае дифракционный предел, предсказываемый теорией, смещен в более далекую область малых размеров. Примером такого направления микроскопии является развивающаяся автоионная микроскопия.

В автоионных микроскопах, используемых при исследовании фи­зики поверхностных явлений, главным образом в металлах, оказывается возможным видение отдельных атомов. Методика авто­ионной микроскопии весьма своеобразна; эта область претерпевает бурное развитие.

Как же далеко мы сможем еще продвинуться по пути раскрытия тайн микрообъектов? Мы видим, что за исторически короткий срок, ис­пользуя новейшие достижения физики и радиоэлектроники, электронная микроскопия превратилась в мощное орудие исследова­ния природы. Обозримое будущее этой области науки связано с реализацией дерзновенных проектов создания таких приборов, кото­рые позволят «приблизить» и сделать зримым многообразный и красочный микромир. Далеко не всё ещё ясно на этом пути, на котором постоянно возникают всё более и более сложные научно-технические и технологические проблемы. Современные приборы микроскопии явля­ются несравненно более сложными устройствами, чем микроскопы недавнего прошлого.

Уже сейчас мы сталкиваемся с очевидным фактом: приборы мик­роскопии становятся всё более сложными и громоздкими по мере проникновения в ранее недосягаемые тайны мира малых объектов. Дальнейшее усложнение этих приборов, увеличение затрат на их изго­товление определяются необходимостью разрешения новых всё более сложных проблем.

Здесь уместно провести аналогию с развитием эксперименталь­ной ядерной физики, где получение информации о свойствах микрочастиц вещества, из которых состоят ядра атомов, связано с созданием сложнейших и, как правило, чрезвычайно громоздких и до­рогих приборов и установок.

Получение информации, раскрывающей тайны микромира, опла­чивается высокой ценой. Однако происходящие при этом затраты интеллектуальных и материальных ресурсов, как показывает опыт ис­тории науки, безусловно, окупаются теми возможностями, которые открываются при этом в технике, физике, химии, биологии и медицине.


Литература:

 

· Рукман Г.И., Клименко И.С. Электронная микроскопия. М., Знание, 1968.

· Савельев И.В. Курс физики, т.3. М., Наука, 1989.


Ðèñóíêè:


[1] Напомним, что 1A° (ангстрем) = 10e-10 м.

[2] В абсолютной системе единиц коэффициент преломления вакуума равен единице.

[3] Обратим внимание на то, что масса электрона по данным 1996 г. известна с относительной погрешностью не более 0,00003, а заряд ¾ не более 0,00002.





Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: