Рассмотрим последовательность (а1,а2,а3) и (b 1, b2,b3), и запишем в виде таблицы

Если последовательность (а1,а2,а3)
(b1, b2 ,b3) записанных в виде таблицы, где наибольшее из чисел а1,а2,а3 находиться над наибольшим из чисел b 1,b2,b3, а второе по величине а1,а2,а3 находиться над вторым по величине из чисел b 1,b2,b3, и где наименьшее из чисел а1,а2,а3 находиться над наименьшим из чисел b 1,b2,b3 то последовательность одномонотонная.
Если
=a1b1, и
=а1b1+а2b2, то
=а1b1+а2b2+a3b3
Для доказательства следующих теорем нам понадобится одно свойство одномонотонных последовательностей, которое оформим в виде леммы.
Лемма. Если (а1, а2, …аn) и (b 1, b2,…bn) одномонотонные последовательности, то их произведение не изменится при перестановки местами столбцов.
Доказательство.
Рассмотрим последовательность с двумя переменными из двух переменных.
=а1b1+а2b2.
Заметим, что а1b1+а2b2 = а2b2+ а1b1 по переместительному свойству сложения. Значит, в самой таблице мы тоже можем переставлять столбцы переменных, при этом сохраняется одномонотонность последовательности. То есть
= 
Теперь рассмотрим последовательность с двумя последовательностями из трех переменных.
=а1b1+а2b2+a3b3.
Кроме того, что мы можем поменять переменные по переместительному свойству, а по сочетательному свойству мы можем объединять некоторые слагаемые, сохраняя одномонотонность последовательности. То есть
а1b1+а2b2+a3b3= (a3b3+а2b2)+ а1b1 = 
Лемма доказана
Теорема 2. Пусть (а1 а2 а3), (b1 b2 b3) – одномонотонные последовательности и (
)( здесь и в дальнейшем ) любая перестановка чисел b1 b2 b3. Тогда
.
Доказательство.
Действительно, если последовательность
отличается от (b1 b2 b3) то найдется пара чисел k, l (1
k<l
3) такая, что последовательности (ak, al) и (bk, bl) не одномонотонны. Значит, поменяв местами числа
и
, мы увеличим всю сумму, а значит и всю сумму
. То есть
, так как
.
Очевидно, что за конечное число попарных перестановок элементов 2-ой строки можно получить одномонотонную последовательность.
Теорема доказана
Упражнения






