Глава I. Основные понятия и определения

Введение

Пусть Н – гильбертово пространство, L(Н) – множество непрерывных линейных операторов в Н. Рассмотрим подмножество А в L(Н), сохраняющееся при сложении, умножении, умножении на скаляры и сопряжении. Тогда А – операторная *-алгебра. Если дана абстрактная *-алгебра А, то одна из основных задач теории линейных представлений (*-гомоморфизмов А в L(Н)) – перечислить все ее неприводимые представления (с точностью до эквивалентности).

Теория унитарных представлений групп восходит к XIX веку и связана с именами Г.Фробениуса, И.Шура, В.Бернсайда, Ф.Э. Молина и др. В связи с предложениями к квантовой физике теория унитарных представлений топологических групп, групп Ли, С*-алгебр была разработана И.М.Гельфандом, М.А. Наймарком, И.Сигалом, Ж.Диксмье, А.А. Кирилловым и др. в 60-70-х годах XX века. В дальнейшем интенсивно развивается теория представлений *-алгебр, заданных образующими и соотношениями.

Дипломная работа посвящена развитию теории представлений (конечномерных и бесконечномерных) *-алгебр, порожденных двумя проекторами.

Глава I в краткой форме содержит необходимые для дальнейшего сведения из теории представлений и функционального анализа. В §1 дано определение *-алгебры и приведены простейшие свойства этих алгебр. В §2 излагаются основные свойства представлений, вводятся следующие понятия: неприводимость, эквивалентность, прямая сумма, интегрирование и дезинтегрирование представлений. В §3 определяются тензорные произведения пространств, тензорные произведения операторов и др. (см. [2], [3], [4], [8], [9])

В Главе II изучаются представления *-алгебры P2

P2 = С < p1, p2 | p12 = p1* = p1, p22 = p2* = p2 >,

порожденной двумя самосопряженными идемпотентами, то есть проекторами (см., например, [12]). Найдены все неприводимые *-представления *-алгебры P2, с точностью до эквивалентности., доказаны соответствующие спектральные теоремы.

В §1 рассматриваются только конечномерные *-представления π в унитарном пространстве Н. Описаны все неприводимые и неэквивалентные *-представления *-алгебры P2. Неприводимые *-представления P2 одномерны и двумерны:

4 одномерных: π0,0(p1) = 0, π0,0(p2) = 0; π0,1(p1) = 0, π0,1(p2) = 1;

π1,0(p1) = 1, π1,0(p2) = 0; π1,1(p1) = 1, π1,1(p2) = 1.

И двумерные:  ,  τ  (0, 1).

Доказана спектральная теорема о разложении пространства Н в ортогональную сумму инвариантных относительно π подпространств Н, а также получено разложение π на неприводимые *-представления. Результаты §1 относятся к математическому фольклору.

В §2 получены основные результаты работы. Для пары проекторов в сепарабельном гильбертовом пространстве Н приведено описание всех неприводимых представлений, доказана спектральная теорема.

В Главе III спектральная теорема для пары проекторов Р1, Р2, применяется к изучению сумм Р1+Р2, аР1+bР2 (0 < a < b). Получены необходимое и достаточное условие на самосопряженный оператор А для того чтобы А = Р1+Р2 или А = аР1+bР2, 0 < a < b, (этот частный случай задачи Г.Вейля (1912 г.) о спектре суммы пары самосопряженных операторов).

Глава I. Основные понятия и определения

§ 1. - алгебры

Определение - алгебры.

Определение 1.1. Совокупность А элементов x, y, … называется алгеб- рой, если:

А есть линейное пространство;

в А введена операция умножения (вообще некоммутативного), удовлет- воряющая следующим условиям:

α (x y) = (α x) y,

x (α y) = α (x y),

(x y) z = x (y z),

(x + y) = xz +xy,

x (y + z) = xy + xz для любых x, y, z  А и любых чисел α.

Два элемента x, y алгебры А называются перестановочными, если xy = yx. Алгебра А называется коммутативной, если все ее элементы попарно пере- становочны.

Определение 1.2. Пусть А – алгебра над полем С комплексных чисел. Инволюцией в А называется такое отображение x → x* алгебры А в А, что

(x*)* = x;

(x + y)* = x* + y*;

(α x)* =  x*;

(x y)* = y*x* для любых x, y  С.

Алгебра над С, снабженная инволюцией, называется инволютивной алгеброй или *- алгеброй. Элемент х* называют сопряженным к х. Подмножество А, сохраняющееся при инволюции, называется само- сопряженным.

Из свойства (i) следует, что инволюция в А необходимо является биекцией А на А.

1.2. Примеры

На А = С отображение z → (комплексное число, сопряженное к z) есть инволюция, превращающая С в коммутативную *- алгебру.

Пусть Т – локально компактное пространство, А = С(Т) – алгебра непре- рывных комплексных функций на Т, стремящихся к нулю на бесконечности (то есть для любого ε > 0 множество {t T: |f (t)|  ε} компактно, f (t)  А. Снабжая А отображением f→ получаем коммутативную *- алгебру. Если Т сводится к одной точке, то возвращаемся к примеру 1).

Пусть Н – гильбертово пространство. А = L(H) – алгебра ограниченных линейных операторов в Н. Зададим инволюцию как переход к сопряженному оператору. Тогда А - *- алгебра.

Обозначим через К(Н) совокупность всех компактных операторов в гильбертовом пространстве Н; операции сложения, умножения на число и умножения определим как соответствующие действия с операторами. Тогда К(Н) будет *- алгеброй, если ввести инволюцию А→А* (А К(Н)). Алгебра К(Н) в случае бесконечного Н есть алгебра без единицы. Действительно, если единичный оператор I принадлежит К(Н), то он переводит открытый единичный шар S H в себя. Значит I не может быть компактным оператором.

Обозначим через W совокупность всех абсолютно сходящихся рядов .

Алгебра W есть *- алгебра, если положить . ()

1.3. Алгебры с единицей

Определение 1.3. Алгебра А называется алгеброй с единицей, если А содержит элемент е, удовлетворяющий условию

ех = хе = х для всех х А (1.1.)

Элемент е называют единицей алгебры А.

Теорема 1.1. Алгебра А не может иметь больше одной единицы.

Доказательство. Действительно, если е΄ - также единица в А, то

е΄х = хе΄ = х, для всех х А (1.2.)

Полагая в (1.1.) х = е΄, а в (1.2.) х = е, получим:

ее΄ = е΄е = е΄ и е΄е = ее΄ =е, следовательно е΄ = е.

Теорема 1.2. Всякую алгебру А без единицы можно рассматривать как подалгебру некоторой алгебры А΄ с единицей.

Доказательство. Искомая алгебра должна содержать все суммы х΄=αе + х, х А; с другой стороны, совокупность всех таких сумм образует алгебру А΄, в которой основные операции определяются формулами:

β(αе + х) = βαе + βх, (α1е + х1) + (α2е + х2) = (α1 + α2)е + (х1 + х2),

(α1 е + х1)(α2 е+ х2)=α1 α2 е +α1 х2 +α2 х1 + х1 х2 (1.3.)

Каждый элемент х΄ из А΄ представляется единственным образом в виде

х΄ = αе + х, х А, так как по условию А не содержит единицы. Поэтому А΄ можно реализовать как совокупность всех формальных сумм х΄ = αе + х, х А, в которой основные операции определяются формулами (1.3.); сама алгебра А получится при α = 0.

Алгебру А΄ можно также реализовать как совокупность всех пар (α, х), х А, в которой основные операции определяются по формулам:

β (α, х) = (βα, βх), (α1, х1) + (α2, х2) = (α1 + α2, х1 + х2),

(α1, х1)(α2, х2) = (α1α2, α1х2 + α2 х1 + х1х2), (1.4.)

аналогично тому, как определяются комплексные числа. Саму алгебру А можно тогда рассматривать как совокупность всех пар (0, х), х А и не делать различия между х и (0, х). Полагая е = (0, х), мы получим:

(α, х) = α(1, 0) + (0, х) = αе + х,

так что вторая реализация алгебры А΄ равносильна первой.

Переход от А к А΄ называется присоединением единицы.

Определение 1.4. Элемент y называется левым обратным элемента х, если xy = e. Элемент z называется правым обратным элемента х, если xz = e.

Если элемент х имеет и левый, и правый обратные, то все левые и правые обратные элемента х совпадают. Действительно, умножая обе части равенства yx = e справа на z, получим

z = (yx)z = y(xz) = ye,

В этом случае говорят, что существует обратный х-1 элемента х.

1.4. Простейшие свойства - алгебр

Определение 1.5. Элемент х *-алгебры А называется эрмитовым или самосопряженным, если х* = х, нормальным, если хх* = х*х. Идемпотентный эрмитов элемент называется проектором. Элемент алгебры называется идемпотентным, если все его (натуральные) степени совпадают.

Каждый эрмитов элемент нормален. Множество эрмитовых элементов есть вещественное векторное подпространство А. Если х и y эрмитовы, то (xy)*= y*x* = yx; следовательно, xy эрмитов, если x и y перестановочны. Для каждого х А элементы хх* и х*х эрмитовы. Но, вообще говоря, эрмитов элемент не всегда представим в этом виде, как показывает пример 1 из пункта 1.2. Действительно, для любого z C , но если z действительно отрицательное число, то его нельзя представить в виде .

Теорема 1.3. Всякий элемент х *-алгебры А можно представить, и притом единственным образом, в виде х = х1 +iх2, где х1, х2 – эрмитовы элементы.

Доказательство. Если такое представление имеет место, то х* = х1 +iх2, следовательно:

,  (1.5.)

Таким образом, это представление единственно. Обратно, элементы х1, х2, определенные равенством (1.5.), эрмитовы и х = х1 +iх2.

Эти элементы х1, х2 называются эрмитовыми компонентами элемента х.

Заметим, что хх* = х12 + х22 + i(х2х1 – х1х2),

хх* = х12 + х22 - i(х2х1 – х1х2)

так что х нормален тогда и только тогда, когда х1 и х2 перестановочны.

Так как е*е = е* есть эрмитов элемент, то е* = е, то есть единица эрмитов элемент.

Если А - *-алгебра без единицы, а А΄ - алгебра, полученная из А присоединением единицы, то, положив  при х А, мы определим инволюцию в А΄, удовлетворяющую всем требованиям определения 2. Так что А΄ станет *-алгеброй. Говорят, что А΄ есть *-алгебра, полученная из А присоединением единицы.

Теорема 1.4. Если х-1 существует, то (х*)-1 также существует и

(х*)-1 = (х-1)*

Доказательство. Применяя операцию * к обеим частям соотношения

х-1х = хх-1 = е,

получим х*(х-1)*= (х*)-1х*=е.

Но это означает, что (х-1)* есть обратный к х*.

Подалгебра А1 алгебры А называется *-подалгеброй, если из х А1 следует, что х* А1.

Непустое пересечение *-подалгебр есть также *-подалгебра. В частности, пересечение всех *-поалгебр, содержащих данное множество S А, есть минимальная *-подалгебра, содержащая S.

Коммутативная *-алгебра называется максимальной, если она не содержится ни в какой другой коммутативной *-подалгебре.

Теорема 1.5. Если В – максимальная коммутативная *-подалгебра, содержащая нормальный элемент х, и если х-1 существует, то х-1 В.

Доказательство. Так как х т х* перестановочны со всеми элементами из В, то этим же свойством обладают х-1 и (х*)-1 = (х-1)*. В силу максимальности В отсюда следует, что х-1 В.

Определение 1.6. Элемент х А - *-алгебры называется унитарным, если хх* = х*х = е, иначе говоря, если х обратим и х = (х*)-1.

В примере 1 п.1.2. унитарные элементы – комплексные числа с модулем, равным 1.

Унитарные элементы А образуют группу по умножению – унитарную группу А. Действительно, если x и y – унитарные элементы *-алгебры А, то

((хy)*)-1 = (у*х*)-1 =(х*)-1 (y*)-1 = xy,

поэтому xy унитарен, и так как ((х-1)*)-1= ((х*)-1)-1 = х-1, то х-1 унитарен.

1.5. Гомоморфизм и изоморфизм алгебр

Определение 1.7. Пусть А и В – две *-алгебры. Назовем гомоморфизмом (*-гомоморфизмом) А в В такое отображение f множества А в В, что

f (x + y) = f (x) + f (y),

f (αx) = α f (x),

f (xy) = f (x) f (y),

f (x*) = f (x)*

для любых х,y А, α С. Если отображение f биективно, то f называют изоморфизмом (*-изоморфизмом).

Определение 1.8. Совокупность I элементов алгебры А называется левым идеалом, если:

I ≠ A;

Из х, y I следует x + y I;

Из х I, а α А следует α х I.

Если I = А, то I называют несобственным идеалом.

Аналогично определяется и правый идеал. Идеал, являющийся одновременно и левым, и правым, называется двусторонним.

Всякий идеал автоматически оказывается алгеброй.

Пусть I – двусторонний идеал в алгебре А. Два элемента х, y из А назовем эквивалентными относительно идеала I, если х-y I. Тогда вся алгебра А разбивается на классы эквивалентных между собой элементов. Обозначим через А совокупность всех этих классов. Введем в А1 операции сложения, умножения на число и умножения, производя эти действия над представителями классов. Так как I – двусторонний идеал, то результат операций не зависит от выбора этих представителей.

Следовательно, А1 становится алгеброй. Эта алгебра называется фактор-алгеброй алгебры А по идеалу I и обозначается A/I.

*-гомоморфизм алгебр описывается при помощи так называемых самосопряженных двусторонних идеалов.

Определение 1.9. Идеал I (левый, правый или двусторонний) называется самосопряженным, если из х I следует х* I.

Самосопряженный идеал автоматически является двусторонним. Действительно, отображение х → х* переводит левый идеал в правый и правый идеал в левый; если поэтому отображение х → х* переводит I в I, то I есть одновременно и левый и правый идеал.

В фактор-алгебре A/I по самосопряженному двустороннему идеалу I можно определить инволюцию следующим образом. Если х-y I, то х*-y* I. Поэтому при переходе от х к х* каждый класс вычетов х по идеалу I переходит в некоторый другой класс вычетов по I. Все условия из определения 1.2. выполнены; следовательно, A/I есть *-алгебра.

Если х → х΄ есть *-гомоморфизм А на А΄, то полный прообраз I нуля (то есть ядро данного гомоморфизма) есть самосопряженный двусторонний идеал в А. Фактор-алгебра A/I *-изоморфна *-алгебре А΄.

Обратно, отображение х → [х] каждого элемента х А в содержащий его класс вычетов по I есть *-гомоморфизм алгебра А на A/I.

§ 2. Представления

2.1. Определения и простейшие свойства представлений.

Определение 2.1. Пусть А - *-алгебра, Н – гильбертово пространство. Представлением А в Н называется *-гомоморфизм *-алгебры А в *-алгебру ограниченных линейных операторов L(H).

Иначе говоря, представление *-алгебры А в Н есть такое отображение из А в L(H), что

π (x+y) = π (x) + π (y), π (α x) = α π(x),

π (xy) = π (x) π (y), π (x*) = π (x)*

для любых х, y  А и α  С.

Размерность гильбертова пространства Н называется размеренностью π и обозначается dimπ. Пространство Н называется пространством представления π.

Определение 2.2. Два представления π1 и π2 инволютивной алгебры А в Н1 и Н2 соответственно, эквивалентны (или унитарно эквивалентны), если существует унитарный оператор U, действующий из гильбертова пространства Н1 в гильбертово пространство Н2, переводящий π1(х) в π2(х) для любого х А, то есть

U π1(х) = π2(х) U для всех х  А.

Определение 2.3. Представление π называется циклическим, если в пространстве Н существует вектор f такой, что множество всех векторов π (х)f (для всех х А) плотно в Н. Вектор f называют циклическим (или тотализирующим) для представления π.

Определение 2.4. Подпространство Н1 Н называется инвариантным, относительно представления π, если π (А)Н1 Н1.

Если Н1 инвариантное подпространство, то все операторы π(х) (х А) можно рассматривать как операторы Н1. Сужения π(х) на Н1 определяют подпредставления π1 *-алгебры А в Н1.

Теорема 2.1. Если Н1 инвариантное подпространство Н, то его ортогональное дополнение также инвариантно.

Доказательство. Пусть f ортогонален к Н1, то есть (f, g) = 0 для всех g Н1. Тогда для любого х А (π(х)f, g) = (f, π(х)*g) = (f, π(х*)g) = 0, так как π(х*)g Н1. Следовательно, вектор π(х)f также ортогонален к Н1.

Обозначим через Р1 оператор проектирования в Н на подпространство Н1 Н1.

Теорема 2.2. Н1 – инвариантное подпространство тогда и только тогда, когда все операторы представления перестановочны с оператором проектирования Р1 на Н1.

Доказательство. Пусть Н1 – инвариантное подпространство и f Н1, но также π(х)f Н1. Отсюда для любого вектора f Н

π(х)Р1f Н1

следовательно, Р1π(х)Р1f = π(х)Р1f,

то есть Р1π(х)Р1 = π(х)Р1.

Применяя операцию инволюции к обеим частям этого равенства и подставляя затем х* вместо х, получаем, что также

Р1π(х)Р1 = Р1π(х).

Следовательно, Р1π(х) = π(х)Р1; операторы Р1 и π(х) коммутируют.

Обратно, если эти операторы перестановочны, то для f Н1

Р1π(х)f = π(х)Р1f = π(х)f;

Следовательно, также π(х)f Н1. Это означает, что Н1 – инвариантное подпространство.

Теорема 2.3. Замкнутая линейная оболочка К инвариантных подпрост- ранств есть также инвариантное подпространство.

Доказательство. Всякий элемент g из К есть предел конечных сумм вида

h = f1 + … + fn, где f1, …, fn – векторы исходных подпространств. С другой стороны, π(х)h = π(х)f1 +…+ π(х)fn есть сумма того же вида и имеет своим пределом π(х)g.

2.2. Прямая сумма представлений. Пусть I – произвольное множество. Пусть (πi)i I - семейство представлений *-алгебры А в гильбертовом пространстве Нi (i I). Пусть

|| πi (х) || ≤ сх

где сх – положительная константа, не зависящая от i.

Обозначим через Н прямую сумму пространств Нi, то есть Н = Нi. В силу (2.1.) можно образовать непрерывный линейный оператор π(х) в Н, который индуцирует πi (х) в каждом Нi. Тогда отображение х → π(х) есть представление А в Н, называемое прямой суммой представлений πi и обозначаемое πi или π1 ….. πn в случае конечного семейства представлений (π1…..πn). Если (πi)i I – семейство представлений *-алгебры А, совпадающих с представлением π, и если CardI = c, то представления πi обозначается через сπ. Всякое представление, эквивалентное представлению этого типа, называется кратным π.

Для доказательства следующего понадобится лемма Цорна. Напомним ее.

Лемма Цорна. Если в частично упорядоченном подмножестве Х всякое линейно упорядоченное подмножество имеет в Х верхнюю грань, то Х содержит максимальный элемент.

Теорема 2.4. Всякое представление есть прямая сумма цикличных представлений.

Доказательство. Пусть f0 ≠ 0 – какой-либо вектор из Н. Рассмотрим совокупность всех векторов π(х)f0, где х пробегает всю *-алгебру А. Замыкание этой совокупности обозначим через Н1. Тогда Н1 – инвариантное подпространство, в котором f0 есть циклический вектор. Другими словами, Н1 есть циклическое подпространство представления π.

Если Н1 = H, то предложение доказано; в противном случае H-Н1 есть отличное от {0} инвариантное подпространство. Применяя к нему тот же прием, мы выделим циклическое подпространство Н2 ортогональное Н1.

Обозначим через М совокупность всех систем {Нα}, состоящих из взаимно ортогональных циклических подпространств представления; одной из таких систем является построенная выше система {Н1, Н2}. Упорядоченная при помощи соотношения включения совокупность М образует частично упорядоченное множество, удовлетворяющее условиям леммы Цорна; именно, верхней гранью линейно упорядоченного множества систем {Нα} М будет объединение этих систем. Поэтому в М существует максимальная система {Нα}. Но тогда Н= Нα; в противном случае в инвариантном подпространстве Н-( Нα) существовало бы отличное от {0} циклическое подпространство Н0 и мы получили бы систему {Нα} Н0 М, содержащую максимальную систему {Нα}, что невозможно.

2.3. Неприводимые представления.

Определение 2.5. Представление называется неприводимым, если в пространстве Н не существует инвариантного подпространства, отличного от {0} и всего Н.

Согласно теореме 2.2. это означает, что всякий оператор проектирования, перестановочный со всеми операторами представления, равен 0 или 1.

Всякое представление в одномерном пространстве неприводимо.

Теорема 2.5. Представление π в пространстве Н неприводимо тогда и только тогда, когда всякий отличный от нуля вектор пространства Н есть циклический вектор этого представления.

Доказательство. Пусть представление π неприводимо. При f Н, f ≠ 0, подпространство, натянутое на векторы π(х)f, х А, есть инвариантное подпространство; в силу неприводимости представления оно совпадает с {0} или Н. Но первый случай невозможен, ибо тогда одномерное пространство

{α f | α C} инвариантно и потому совпадает с Н, то есть π(х)=0 в Н. Во втором же случае f есть циклический вектор.

Обратно, если представление π приводимо и К – отличное от {0} и Н инвариантное подпространство в Н, то никакой вектор f из К не будет циклическим для представления π в Н.

Теорема 2.6. (И.Шур) Представление π неприводимо тогда и только тогда, когда коммутант π (А) в L(H) сводится к скалярам (то есть операторам кратным единичному).

Доказательство. Пусть представление π неприводимо и пусть ограни- ченный оператор В перестановочен со всеми операторами π(х). Предположим сначала, что В – эрмитов оператор; обозначим через E(λ) спектральные проекторы оператора В. Тогда при любом λ оператор E(λ) перестановочен со всеми операторами π(х); в виду неприводимости представления E(λ) =0 или E(λ) =1, так как (E(λ) f, f) не убывает при возрастании λ, то отсюда следует, что существует λ0 такое, что E(λ) =0 при λ<λ0 и E(λ) =1 при λ>λ0. Отсюда

В= λ dE(λ) = λ0 1.

Пусть теперь В – произвольный ограниченный оператор, переста- новочный со всеми операторами π(х). Тогда В* также перестановочен со всеми операторами π(х). Действительно,

В*π(х) = (π(х*)В)* = (Вπ(х*))* = π(х)В*

Поэтому эрмитовы операторы В1= , В2= также перестановочны со всеми операторами π(х) и, следовательно, кратны единице. Но тогда и оператор В = В1+iВ2 кратен единице, то есть В – скаляр.

Обратно, пусть всякий ограниченный оператор, перестановочный со всеми операторами π(х), кратен единице. Тогда, в частности, всякий оператор проектирования, перестановочный со всеми операторами π(х) кратен единице. Но оператор проектирования может быть кратным единице только тогда, когда он равен 0 или 1. Следовательно, представление неприводимо.

Определение 2.6 Всякий линейный оператор Т: Н → Н΄ такой, что Тπ(х)=π΄(х)Т для любого х А, называется оператором сплетающим π и π΄.

Пусть Т: Н → Н΄ - оператор, сплетающий π и π΄. Тогда Т*: Н΄ → Н является оператором, сплетающим π΄ и π, так как

Т* π΄(х) = (π΄(х)Т)* = (Тπ(х*))* = π(х)Т*

Отсюда получаем, что

Т* Тπ(х)=Т* π΄(х)Т= π(х)Т*Т (2.1.)

Поэтому |T| = (T*T)1/2 перестановочен с π(А). Пусть Т = U|T| - полярное разложение Т. Тогда для любого х А

Uπ(х)|T| = U|T| π(х)= Тπ(х)= π΄(х)Т=π΄(х)U|T| (2.2.)

Если KerT={0}, то |T| (Н) всюду плотно в Н и из (2.2.) следует

Uπ(х) = π΄(х)U (2.3.)

Если, кроме того, = Н΄, то есть если KerT*={0}, то U является изоморфизмом Н и Н΄ и (2.3.) доказывает что π и π΄ эквивалентны.

Пусть π и π΄ - неприводимые представления *-алгебры А в гильбертовых пространствах Н и Н΄ соответственно. Допустим, что существует ненулевой сплетающий оператор Т: Н → Н΄. Тогда из (2.1.) и теоремы 2.6. следует, что Т*Т и ТТ* - скалярны (≠0) и π, π΄ эквивалентны.

2.4. Конечномерные представления.

Теорема 2.7. Пусть π – конечномерное представление *-алгебры А. Тогда π = π1 ….. πn, где πi неприводимы.

Доказательство. Если dimπ = 0 (n=0), то все доказано. Предположим, что dimπ = q и что наше предложение доказано при dimπ<q. Если π неприводимо, то предложение снова доказано. В противном случае π = π΄  π΄΄, причем dimπ΄<q, dimπ΄΄<q, и достаточно применить предположение индукции.

Разложение π = π1 ….. πn не единственно. Тем не менее, мы получим некоторую теорему единственности.

Пусть ρ1, ρ2 – два неприводимых подпредставления π. Им отвечают инвариантные подпространства Н1 и Н2. Пусть Р1 и Р2 – проекторы Н на Н1 и Н2. Они коммутируют с π(А). Поэтому ограничение Р2 на Н1 есть оператор, сплетающий ρ1 и ρ2. Следовательно, если Н1 и Н2 не ортогональны, то из пункта 2.3. следует, что ρ1 и ρ2 эквивалентны. Это доказывает, что любое неприводимое подпредставление π эквивалентно одному из πi. Итак, перегруп- пировав πi, получаем, что π = ν1 ….. νm, где каждое νi есть кратное ρiνi΄ неприводимого представления νi΄, и νi΄ попарно эквивалентны. Если ρ – неприводимое представление π, то предыдущее рассуждение показывает, что соответствующее инвариантное подпространство Н΄ ортогонально всем инвариантным подпространствам Нi, отвечающих νi, кроме одного. Поэтому Н΄ содержится в одном из Нi. Это доказывает, что каждое пространство Нi определяется однозначно: Нi – это подпространство Н, порожденное пространствами подпредставлений π, эквивалентных νi΄. Таким образом, доказано предложение.

Теорема 2.8. В разложении π = ρ1ν1΄ ….. ρmνm΄ представления π, (где ν1΄,…, νm΄ неприводимы и неэквивалентны) целые числа ρi и классы представлений νi΄ определяются единственным образом, как и пространства представлений.

2.5. Интегрирование и дезинтегрирование представлений. Напомним определение борелевского пространства.

Определение 2.7. Борелевским пространством называется множество Т, снабженное множеством В подмножеств Т, обладающим следующими свойствами: Т В, Ø В, В инвариантно относительно счетного объединения, счетного пересечения и перехода к дополнению.

Определение 2.8. Пусть Т1, Т2 – борелевские пространства. Отображение f: Т1→Т2 называется борелевским, если полный прообраз относительно f любого множества в Т2 есть борелевское множество в Т1.

Дадим несколько вспомогательных определений и утверждений.

Пусть Т – борелевское пространство и μ – положительная мера на Т.

Определение 2.9. μ – измеримое поле гильбертовых пространств на Т есть пара ε = ((H(t))t T, Г), где (H(t))t T – семейство гильбертовых пространств, индексы которых пробегают Т, а Г – множество векторных полей, удовлетворяющее следующим условиям:

(i) Г – векторное подпространство Н(t);

существует последовательность (х1, х2,…) элементов Г таких, что для любого t T элементы хn(t) образуют последовательность H(t);

для любого х Г функция t→||x(t)|| μ – измерима;

пусть х – векторное поле; если для любого y Г функция t→(x(t), y(t)) μ – измерима, то х Г.

Пусть ε = ((H(t))t T, Г) μ – измеримое поле гильбертовых пространств на Т. Векторное поле х называется полем с интегрируемым квадратом, если х Г и ||x(t)||2 dμ(t) < +∞.

Если х, y – с интегрируемым квадратом, то х+y и λх (λ С) – тоже и функция t →(x(t), y(t)) интегрируема; положим

(x, y) = (x(t), y(t)) dμ(t)

Тогда векторные поля с интегрируемым квадратом образуют гильбертово пространство Н, называемое прямым интегралом Н(t) и обозначаемое x(t)dμ(t).

Определение 2.10. Пусть ε = ((H(t))t T, Г) – измеримое поле гильбер- товых пространств на Т. Пусть для любого t T определен оператор S(t) L(H(t)). Если для любого х T поле t→S(t)x(t) измеримо, то t→S(t) называется измеримым операторным полем.

Пусть Т – борелевское пространство, μ - положительная мера на Т, t→Н(t) - μ - измеримое поле гильбертовых пространств на Т. Пусть для каждого t T задано представление π(t) *-алгебры А в Н(t): говорят, что t→π(t) есть поле представлений А.

Определение 2.11. Поле представлений t→π(t) называется измеримым, если для каждого х А поле операторов t→π(t)х измеримо.

Если поле представлений t→π(t) измеримо, то для каждого х А можно образовать непрерывный оператор π(х)= π(t) (x) dμ(t) в гильбертовом прост- ранстве Н = Н(t) dμ(t).

Теорема 2.9. Отображение х→π(х) есть представление А в Н.

Доказательство. Для любых х, y А имеем

π(х+y) = π(t) (x+y) dμ(t) = (π(t) (x) + π(t) (y)) dμ(t) = π(t) (x)dμ(t) +

+ π(t) (y) dμ(t) = π(х) +π(y)

Аналогично π(λх) = λπ(х), π(хy) = π(х) π(y), π(х*)=π(х)*

Определение 2.12. В предыдущих обозначениях π называется прямым интегралом π(t) и обозначается π = π(t) dμ(t).

Определение 2.13. Операторное поле t→φ(t)I(t) L(H(t)) где I(t)-единичный оператор в H(t), называется диагональным оператором в Н= Н(t)dμ(t).

Пусть ε = ((H(t))t T, Г) – μ-измеримое поле гильбертовых пространств на Т, μ1 – мера на Т, эквивалентная μ (то есть каждая из мер μ1, μ абсолютно непрерывна по другой), и ρ(t)= . Тогда отображение, которое каждому х Н== Н(t)dμ(t) составляет поле t→ρ(t)-1/2х(t)Н1= Н(t) dμ1(t),

есть изометрический изоморфизм Н на Н1, называемый каноническим.

Действительно,

|| ρ(t)-1/2х(t)dμ1(t)||2 = ||х(t)||2ρ(t)-1 dμ1(t) = ||х(t)||2dμ1(t) = ||х(t)||2

Теорема 2.10. Пусть Т – борелевское пространство, μ – мера на Т, t→Н(t) – измеримое поле гильбертовых пространств на Т, t→π(t) – измеримое поле представлений А в Н(t),

Н = Н(t) dμ(t), π1== π(t)dμ(t),

Д – алгебра диагональных операторов в Н. Пусть μ1 – мера на Т, эквивалентная μ,

Н1 = Н(t) dμ1(t), π1 = π(t) dμ1(t),

Д1 – алгебра диагональных операторов в Н1. Тогда канонический изоморфизм преобразует π в π1 и Д в Д1.

Доказательство. Пусть ρ(t)= . Канонический изоморфизм из Н в Н1 есть изометрический изоморфизм, который переводит х = x(t) dμ(t) Н в

Ux = ρ-1/2х(t) dμ1(t).

Пусть α А. Имеем

π1(α)Ux = π(t)(α) ρ-1/2 х(t) dμ1(t) = U π(t)(α) х(t) dμ(t) = Uπ(α)x,

поэтому и преобразуем π в π1. Тогда если S Д, то аналогично SUx = USx, для любого х Н.

Определение 2.14. Пусть Т, Т1 – борелевские пространства; μ, μ1 – меры на Т и Т1 соответственно; ε = ((H(t))t T, Г), Z1 = ((H1(t1))t1 T1, Г), - μ-измеримое и μ1-измеримое поля гильбертовых пространств. Пусть η: Т→Т1 – борелевский изоморфизм, переводящий μ в μ1; η-изоморфизм ε на ε1 называется семейство (V(t))t T, обладающее следующими свойствами:

для любого t T отображение V(t) является изоморфизмом Н(t) на Н1(η(t));

для того, чтобы поле векторов t→x(t) H(t) на Т было μ-измеримо, необходимо и достаточно, чтобы поле η(t)→V(t)х(t) Н1(η(t)) на Т1 было μ1-измеримо.

Отображение, переводящее поле х Н = Н(t) dμ(t) в поле η(t))→V(t)х(t) Н1 = Н1(t) dμ1(t), есть изоморфизм Н на Н1, обозначаемый V(t) dμ(t).

Теорема 2.11. Пусть Т – борелевское пространство; μ – мера на Т, t→H(t) – μ- измеримое поле гильбертовых пространств на Т, t→ π(t) - μ- измеримое поле представлений А в H(t),

Н = Н(t) dμ(t), π == π(t) dμ(t),

Д – алгебра диагональных операторов в Н. Определим аналогичным образом Т1, μ1, t1→H1(t1), t1→ π1(t1), Н1, π1, Д1.

Предположим, что существует:

N, N1 – борелевские подмножества Т и Т1, такие что μ (N) = μ (N1) = 0;

борелевский изоморфизм η: T\N →T\N1, преобразует μ в μ1;

η-изоморфизм t→V(t) поля t→Н(t) (t Z\N) на поле t1→Н1(t1) (t1 Т1\N1) такой, что V(t) преобразует π(t) в π1(η(t)) для каждого t.

Тогда V = V(t)dμ(t) преобразует Д в Д1 и π в π1.

Доказательство. Обозначим через It, It1 единичные операторы в Н(t) и Н1(t1). Если f L∞(T, μ) и если f1 – функция на Т1\N1, получаемая из f|(T\N) при помощи η, то V преобразует f(t)It dμ(t) в f1(t1) It1 dμ1(t1), поэтому V преоб- разует Д в Д1. С другой стороны, пусть α А и х = х(t) dμ(t) Н.

Тогда

Vπ(α)х = V π(t)(α) х(t) dμ(t) = V(η-1(t1)) π(η-1(t1))(α) х(η-1(t1)) dμ1(t1) = π1(t1)(α) V(η-1(t1)) х(η-1(t1)) dμ1(t1) = π1 (α) V х

Поэтому V преобразует π в π1.

Приведем примеры прямых интегралов.

Пусть имеется последовательность гильбертовых пространств  и дискретная мера μ на N, то есть μ(n)=1 для любого n N. Тогда

Н(n) dμ(n) = Н(n), то есть прямой интеграл сводится к ортогональ- ной сумме.

Пусть Т=[0, 1] и в каждой точке t Т соответствует поле комплексных чисел С, и на Т задана линейная мера Лебега dt. Тогда С dt = L2 (0, 1).

Изоморфизм устанавливается отображением х = х(t) dt →х(t) L2 (0, 1).

Разложения представления на неприводимые представления в прямой интеграл называют дезинтегрированием.

§ 3. Тензорные произведения пространств

3.1. Тензорные произведения пространств. Пусть  - конечная последовательность сепарабельных гильбертовых пространств,  - некоторый ортонормированный базис в Нк.

Образуем формальное произведение

 (3.1.)

α = (α1,…, αn)  (n раз), то есть рассмотрим упорядо- ченную последовательность () и на формальные векторы (3.1.) натянем гильбертово пространство, считая, что они образуют его ортонормиро- ванный базис. Полученное сепарабельное гильбертово пространство называется тензорным произведением пространств Н1,…, Нn и обозначается Н1 ,…, Нn = . Его векторы имеют вид:

f =  (fα C), || f ||2 = < ∞ (3.2.)

Пусть g = , тогда скалярное произведение опреде- ляется формулой

(f, g) =  (3.3.)

Пусть f(k) = (к = 1,…, n) – некоторые векторы. По определению

f = f(1) f(n) =  (3.4.)

Коэффициенты fα =  разложения (3.4.) удовлетворяют условию (3.2.), поэтому вектор (3.4.) принадлежит , при этом

|| f || =  (3.5.)

Функция Н1 ,…, Нn < >  линейна по каждому фрагменту, а линейная оболочка L векторов (3.4.) плотна в  - эта линейная оболочка называется алгебраическим (непополненным) тензорным произведением пространств Н1,…, Нn и обозначается α.

Приведенное определение тензорного произведения зависит от выбора ортогонального базиса в каждом сомножителе . При изменении базисов получаем тензорное произведение, изоморфное с сохранением своей структуры исходному произведению.

Пусть Н1 и Н2 – гильбертовы сепарабельные пространства. Тогда конструкция тензорного произведения означает следующее. Рассматривается линейная оболочка L формальных произведений f1 f2, причем считается, что

(f1 + g1) f2 = f1 f2 + g1 f2 (3.6.)

f1 (f2 + g2) = f1 f2 + f1 g2 (3.7.)

(λ f1) f2=λ (f1 f2) (3.8.)

f1 λ (f2) = λ (f1 f2) (3.9.)

f1, g1 Н1; f2, g2 Н2; λ С.

Иными словами, линейное пространство L факторизируется по его линейному подмножеству, натянутому на всевозможные векторы, имеющие вид разностей между правыми и левыми частями равенств (3.6.) – (3.9.).

Затем вводится скалярное произведение в L.

(f1 f2, g1 g2) = (f1 g1)(f2 g2) (3.10.)

f1, g1 Н1; f2, g2 Н2,

а затем распространяется на другие элементы из факторизованного L билинейным образом.

3.2. Тензорные произведения операторов. Определим тензорное произведение ограниченных операторов.

Теорема 3.1. Пусть ,  - две последовательности гильбер- товых пространств,  - последовательность операторов Ак L(Нк, Gк). Определим тензорное произведение А1 Аn = Ак формулой

( ) f = () =  (3.11.)

(f ).

Утверждается, что ряд в правой части (3.11.) сходится слабо в и определяет оператор  L ( , ), причем

|| || = || || (3.12.)

Доказательство. Достаточно рассмотреть случай n=2, так как в силу равенства Н1 ,…, Нn = (Н1 ,…, Нn-1) Нn общий случай получается по индукции.

Пусть - некоторый ортонормированный базис в Gк (к = 1, 2) и пусть g = G1 G2. В качестве f возьмем вектор из Н1 Н2 с конечным числом отличных от нуля координат fα.

Зафиксируем α2, β1  Z+ и обозначим через f(α2) Н1 вектор f(α2) =  и через g(β1) G2 – вектор g(β1) = . Получим

= =

=



double arrow
Сейчас читают про: