Анализ физических факторов, определяющих спектр сигнала от движущейся цели

Физическими предпосылками для решения задачи распознавания классов движущихся наземных целей являются как различия в частоте колебаний подрессоренной массы цели при ее движении по трассе, так и особенности вибрации ее конструктивных элементов [21, 12]. Механизмами возникновения спектральных отличий для классов колесной и гусеничной техники являются:

1. Вибрации объекта, обусловленные работой двигателя, которые являются следствием как вращения неуравновешенных частей механизмов двигателя, так и процессов ударного сгорания топливной смеси в цилиндрах. Для дизельных и карбюраторных двигателей спектр отраженного сигнала содержит гармоники основной частоты коленчатого вала, значение которой лежит в диапазоне частот . Положение спектральных линий меняется в зависимости от числа оборотов двигателя, а следовательно и от скорости движения объекта.

2. Вибрации объекта при движении по неровностям трассы без отрыва от ее поверхности. Такие вибрации зависят от формы пространственного спектра неровностей дороги, собственных колебательных характеристик объекта как механической системы, скорости движения и типа грунта. Составляющая спектра, связанная с этими вибрациями, имеет сплошной вид с максимумами, обусловленными АЧХ подвески ходовой части и характеристиками грунта. Резонансные частоты подвески у тяжелых и легких гусеничных объектов составляют соответственно 1,1 и 1,4 Гц. Для гусеничной техники характерны также колебания, возбуждаемые при движении катков по неровностям трассы, сосредоточенные в диапазоне частот . При движении колесной техники по неровностям дороги колебания возбуждаются: за счет колебания кузова в диапазоне частот ; за счет колебания мостов в диапазоне частот ; за счет колебания двигателя на подвеске в диапазоне частот . Основная энергия сигнала при движении колесной техники по неровностям дороги приходится на диапазон частот , а максимум спектральной плотности – на диапазон .

3. вибрации, связанные с наличием гусеничного движителя возникают из–за движения опорных катков по профилированной гусенице и возбуждают колебания на «траковой» частоте и ее гармониках. Спектр этого колебания зависит от скорости движения объекта, а значение «траковой» частоты можно определить из соотношения

 

F=V/L (1.1)

 

где L – длина гусеницы, м; V – скорость объекта, м/с.

При скоростях движения 3–15 м/с значение частоты «траковой» составляющей в спектре находится в диапазоне  за счет многополярности подвески гусениц. Значение частот колебаний, возбуждаемых вследствие нецентрированности колес и катков, можно определить из соотношения

 

F=V/d (1.2)

где V – скорость движения, м/с; d – диметр катка, м.

Как видно из (1.2), спектр колебаний зависит от скорости движения. При движении со скоростями  он сосредоточен в диапазоне частот от 0,5 до единиц герц. Удары траков гусениц о дорогу с твердым покрытием приводят к возбуждению колебаний, значение частоты которых зависит от скорости движения и лежит в диапазоне от 10 до 60 Гц.

Физическими предпосылками для решения задачи распознавания классов наземных целей являются как различия в частоте колебаний подрессоренной массы цели при ее движении по трассе, так и особенности вибраций ее конструктивных элементов. Так, например, амплитуда колебаний конструктивных элементов для танка составляет (0,01…0,25) мм, а для автомобиля (0,01…3) мм. Частота вибраций соответственно лежит в пределах (200…2000) …..Гц и (0,5…30) Гц. Представив модель цели в виде совокупности блестящих точек (БТ), результирующий сигнал на входе антенны РЛС можно записать в виде:

 

                    (1.3)

 

где – коэффициент усиления антенны, – расстояние до центра масс (ЦМ) цели, – волновое число, – начальная фаза, – количество БТ цели, – несущая частота, – диаграмма обратного рассеяния по мощности –ой БТ, – разность хода волн от ЦМ до –й БТ.

Величина  определяет изменение фазы –й БТ . Можно показать, что разность хода волн  равна

 

                                                             (1.4)

 

где – математическое ожидание расстояния от центра масс до –й колеблющейся БТ; – математическое ожидание расстояния от РЛС до колеблющегося ЦМ.

Радиальные составляющие колебаний БТ с угловой скоростью будут определять изменения мгновенной доплеровской частоты. Доплеровская частота для –й БТ при  будет равна .

Например, при движении цели на РЛС расстояние от – й БТ до центра раскрыва антенны РЛС будет описываться выражением

 

                               (1.5)

 

При малых угловых высотах цели  величиной  можно пренебречь. Тогда , а

 

.                  (1.6)

 

Так как флуктуации фазы БТ определяют доплеровскую добавку

 

 

с учетом  окончательно запишем

 

                                                             (1.7)

 

Так, например, при 5 мм, = 8 мм и = 0,25 рад/с величина составляет 78 Гц. Видно, что с уменьшением  или увеличением  увеличивается доплеровская добавка. Кроме того, различия в скорости угловых колебаний (вибраций)  для различных целей являются основой для их распознавания.

Учитывая соотношения (1.5–1.7) рассмотрим фазовый множитель . Видно, что статистическая структура результирующего сигнала на входе антенны ИРТС будет определяться доплеровскими добавками , вносимыми каждой блестящей точкой представляющей объект. Применяя сложные сигналы, позволяющие разделить блестящие точки цели (сверхразрешение по дальности или угловым координатам) и измеряя доплеровский сдвиг частоты для каждой из них, можно построить портрет цели в системе координат (линейный размер цели, доплеровская частота). Основой для решения задачи распознавания являются не только различия в числе БТ и расстояниях между ними для различных объектов, но и в особенностях их колебаний для движущейся цели или вибраций при нулевой скорости и работающем двигателе. Во всех указанных случаях проявляется эффект внешней когерентности (блуждания –й БТ относительно неподвижного или медленно колеблющегося ЦМ). Для когерентных РЛС, использующих узкополосные сигналы, этот эффект может быть зафиксирован в законе изменения максимумов допплеровского спектра коротких реализаций результирующего сигнала, а для некогерентных в определенной закономерности участков «сгущения» и «разрежения» диаграммы обратного рассеяния цели.

В работе [79], автор которой для анализа статистической структуры сигналов, отраженных от цели, представляет ее совокупностью локальных отражателей показано, что двухмерная корреляционная функция для совокупности движущихся независимых отражателей равна

 

,                          (1.8)

 

где – линейный размер объема, занимаемого отражателями;  – средняя скорость их движения; – дисперсия скорости.

Для совокупности жестко связанных отражателей эта зависимость имеет вид:

 

              (1.9)

 

где ,  и – среднее значение, дисперсия и корреляционная функция изменения расстояний до n– го отражателя во времени – дисперсия радиальной скорости n– го локального источника. Видно, что синхронность колебаний отражателей во втором случае приводит к зависимости функции  от числа отражателей и расстояний между ними. Степень жесткости связей отражающих элементов для автомобилей и танков различна, и это должно проявляться в статистической структуре фазы или доплеровского спектра отраженного сигнала, обусловленного особенностями колебаний конструктивных элементов целей.

 




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: