Об отрицательных величинах в физике

 

При выводе закона сохранения импульса мы допустили, что скорость тела может быть отрицательной. Вообще говоря, в природе отрицательных величин не бывает, их придумали математики. С другой стороны, такие приёмы упрощают решение задач. Многие отрицательные величины появились в физике в результате договорённостей. Например, согласно Цельсию, температуру ниже точки замерзания чистой воды договорились считать отрицательной. Это удобно в быту и технике. А согласно Кельвину, отрицательной температуры вообще не бывает, температура любой среды может быть только положительной. Это удобно в теоретической физике. Рассмотрим, как в физике появились отрицательные скорости.

Предположим, расстояние от перекрёстка до школы 200 м направо, но школьник повернул налево и прошёл 200 м до киоска с мороженным. Результат отрицательный в плане посещаемости школы. Значит, можно записать, что налево школьник прошел минус 200 м. Если до киоска школьник шёл 200 секунд, значит, его средняя скорость равна -1 м/с. Мы понимаем, что со школьником ничего не случилось, пусть он и шел с отрицательной скоростью. Просто после того, как мы договорились считать направление «налево» отрицательным, любой путь «налево» будет иметь знак минус. При этом путь направо будет иметь знак плюс. Этот метод, который называется метод координат (или векторный) придумал математик Декарт ещё в XVII веке, а Ньютон использовал его в своей механике.

Часто говорят, путь, скорость, сила – это векторные величины, потому что результат движения зависит от направления (вектор – это и есть направление). Но мы должны понимать, что природные величины существуют независимо от нашей воли, а выбор положительного направления есть результат соглашения, он существует только на бумаге. Возьмём, скажем, время или температуру. Эти природные величины явно имеют выделенные направления – от прошлого к будущему, или от холода к теплу. Но математики наотрез отказываются признавать их векторами и понятно почему. В математике таких ограничений полным-полно. Собственно, математика это и есть игра с числами, в которую можно играть в одиночку и самому устанавливать правила игры. К сожалению, у физиков нет возможности договориться с Природой и скачивать энергию ниоткуда. В этом вся разница. Разумеется, польза математики велика, мы будем её использовать. Но только как средство. А целью для нас является поиск новых источников энергии. Но вернёмся к закону сохранения полного (суммарного) импульса, которое с учетом знаков имеет вид: р1 – р2 = 0 (9.1). Перепишем (9.1) в виде: m1v1 – m2v2 = 0 (9.2). Если t – время взаимодействия двух тел (например, время прохождения ядра внутри пушки), то разделив (9.2) на t, получаем: m1v1/t

= m2v2/t, или m1a1 = m2a2. С учетом (4.8) получаем:

F1 = F2 (9.3). Уравнение (9.3) принято называть третьим законом Ньютона. Так как он получен из закона сохранения импульса, его следует считать независимым от второго закона Ньютона. Это справедливо, так как второй закон был выведен из закона сохранения энергии. Законы Ньютона составляют основу классической механики.

 

Два закона Ньютона

 

Принято считать, что классическая механика стоит, как на трёх китах, на трёх законах Ньютона. Это не совсем так. На самом деле механика основана на четырёх законах Ньютона. Рассмотрим их подробнее.

Свой первый закон (закон инерции) Ньютон записал так: «Если на тело не действуют другие тела, то скорость данного тела не изменяется». Такое тело ещё называют «свободным». Заметим, свободным тело может быть только в глубоком космосе, где притяжение далеких звёзд практически отсутствует. В наши дни первый закон Ньютона формулируют по-другому: «Существуют тела отсчёта, относительно которых свободное тело перемещается с постоянной скоростью». Такое утверждение называется постулатом. Почему закон инерции понадобилось преобразовывать в постулат? Причины две. Во-первых, мы не никогда не сможем избавиться от притяжения Земли, хотя и верим, что за пределами Солнечной системы свободное тело будет двигаться по инерции миллионы лет с неизменной скоростью. Во-вторых, для измерения скорости необходимо знать длину пути и время в пути. Если время можно измерить секундомером, то для измерения длины пути необходимо иметь нулевую отметку. Тело, на котором сделана нулевая отметка, называют телом отсчёта. Из нулевой отметки проводят три воображаемые взаимно-перпендикулярные линии и размечают их на метры. Так получается виртуальная трехмерная координатная сетка.

Тело отсчета вместе с привязанной системой координат называют системой отсчёта. С учётом системы координат смысл постулата более ясен. Надо понимать, что в природе существуют системы отсчёта, относительно которых выполняется закон инерции – первый закон Ньютона. Такие системы принято называть инерциальными. Запомнить легко: в инерциальной системе выполняется закон инерции. Отсюда вытекает правило: если в некоторой системе отсчёта нарушается закон инерции (т. е. тело изменяет скорость без причины), значит, данная система отсчета не является инерциальной. Возникает вопрос, как выбирать инерциальную систему? Очевидно, если свободное тело движется с постоянной скоростью, значит, инерциальная система сама тоже должна двигаться с постоянной скоростью. Если тело движется с ускорением, его нельзя рассматривать в качестве инерциальной системы отсчёта.

Свой второй закон Ньютон записывал так: a =F/m (10.1). Он говорил, что ускорение тела пропорционально силе и обратно пропорционально массе. Отсюда следует, что если известна сила, ускорение тела вычислить легко. Но как измерить силу? Мы до сих пор не совсем понимаем, что такое сила (дать определение, это ещё не значит – понять), а уж придумать прибор для её измерения – вовсе непросто. Гораздо легче измерить ускорение: есть секундомер, есть рулетка. Поэтому в наши дни второй закон записывают так: F = ma (10.2). Второе уравнение равносильно первому, но применять его гораздо удобнее. Считается, что второй закон открыт опытным путем. Мы вывели уравнение (10.1) из закона сохранения энергии, который, в общем, тоже установлен на основании опытов. Заметим, что уравнение второго закона Ньютона верно т олько относительно инерциальной системы отсчёта. Если относительно некоторой системы отсчёта тело имеет ускорение без видимых причин, значит, данная система не является инерциальной.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: