Открытие нуклеиновых кислот и изучение их свойств

 

Термин нуклеиновые кислоты был введен немецким биохимиком Р. Альтманом в 1889 г., после того как эти соединения были открыты в 1869 г. швейцарским врачом Ф. Мишером. Мишер экстрагировал клетки гноя разбавленной соляной кислотой в течение нескольких недель и получил в остатке почти чистый ядерный материал. Этот материал он считал характерным веществом клеточных ядер и назвал его нуклеином. По своим свойствам нуклеин резко отличался от белков: он был более кислым, не содержал серу, но зато в нем было много фосфора, он хорошо растворялся в щелочах, но не растворялся в разбавленных кислотах.

 

В начале 30‑х годов довольно прочно укоренилось представление, будто для растительных клеток характерна нуклеиновая кислота дрожжевого типа, а тимонуклеиновая кислота свойственна только ядрам животных клеток. Два типа нуклеиновых кислот – РНК и ДНК – в то время называли соответственно растительной и животной нуклеиновыми кислотами. Однако, как показали ранние исследования А.Н. Белозерского, такое деление нуклеиновых кислот неоправданно. В 1934 г. Белозерский впервые обнаружил тимонуклеиновую кислоту в растительных клетках: из проростков гороха он выделил и идентифицировал тимин‑пиримидиновое основание, характерное именно для ДНК. Затем он обнаружил тимин и в других растениях (семенах сои, фасоли). В 1936 г. А.Н. Белозерский и И.И. Дубровская выделили препаративно ДНК из проростков конского каштана. Кроме того, серия работ, выполненных в 40‑х годах в Англии Д. Девидсоном с сотрудниками, убедительно показала, что растительная нуклеиновая кислота (РНК) содержится во многих животных клетках.

Широкое применение разработанной Р. Фельгеном и Г. Розенбеком (1924) цитохимической реакции на ДНК и реакции Ж. Браше (1944) на РНК позволило довольно быстро и однозначно решить вопрос о преимущественной локализации этих нуклеиновых кислот в клетке. Оказалось, что ДНК сосредоточена в ядре, в то время как РНК преимущественно концентрируется в цитоплазме. Позднее было выяснено, что РНК содержится как в цитоплазме, так и в ядре, а кроме того, были выявлены цитоплазматические ДНК.

Что касается вопроса о первичной структуре нуклеиновых кислот, то к середине 40‑х годов в науке прочно утвердилось представление П. Левина, согласно которому все нуклеиновые кислоты построены по одному типу и состоят из одинаковых так называемых тетрануклеотидных блоков. В каждом из этих блоков, по мнению Левина, содержится четыре разных нуклеотида. Тетрануклеотидная теория строения нуклеиновых кислот в значительной мере лишала эти биополимеры специфичности. Поэтому не удивительно, что всю специфику живого связывали в то время только с белками, природа мономеров которых гораздо разнообразнее (20 аминокислот).

Первую брешь в теории тетрануклеотидного строения нуклеиновых кислот пробили аналитические данные английского химика Дж. Гуланда (1945–1947). При определении состава нуклеиновых кислот по азоту оснований он не получил эквимолярного соотношения оснований, как это должно было бы быть согласно теории Левина. Окончательно тетрануклеотидная теория строения нуклеиновых кислот рухнула в результате исследований Э. Чаргаффа и его сотрудников (1949–1951). Для разделения оснований, выщепляющихся из ДНК в результате ее кислотного гидролиза, Чаргафф использовал хроматографию на бумаге. Каждое из этих оснований было точно определено спектрофотометрически. Чаргафф заметил значительные отклонения от эквимолярного соотношения оснований в ДНК разного происхождения и впервые определенно заявил, что ДНК обладает выраженной видовой специфичностью. Тем самым было покончено с гегемонией концепции о специфичности белка в живой клетке. Анализируя ДНК разного происхождения, Чаргафф открыл и сформулировал уникальные закономерности состава ДНК, вошедшие в науку под названием правил Чаргаффа. Согласно этим правилам, во всех ДНК, независимо от происхождения, количество аденина равно количеству тимина (А = Т), количество гуанина равно количеству цитозина (Г = Ц), количество пуринов равно количеству пиримидинов (Г + А = Ц + Т), количество оснований с 6‑аминогруппами равно количеству оснований с 6‑кетогруппами (А + Ц = Г + Т). Вместе с тем, несмотря на такие строгие количественные соответствия, ДНК разных видов отличаются по величине отношения А + Т: Г + Ц. В одних ДНК количество гуанина и цитозина преобладает над количеством аденина и тимина (эти ДНК Чаргафф назвал ДНК ГЦ‑типа); другие ДНК содержали аденина и тимина больше, чем гуанина и цитозина (эти ДНК были названы ДНК АТ‑типа). Полученные Чаргаффом данные по составу ДНК сыграли исключительную роль в молекулярной биологии. Именно они легли в основу открытия строения ДНК, сделанного в 1953 г. Дж. Уотсоном и Ф. Криком.

Еще в 1938 г. У. Астбери и Ф. Белл при помощи рентгеноструктурного анализа показали, что плоскости оснований в ДНК должны быть перпендикулярными к длинной оси молекулы и напоминать как бы стопку пластин, лежащих друг над другом. По мере совершенствования техники рентгеноструктурного анализа к 1952–1953 гг. накопились сведения, позволившие судить о длине отдельных связей и углах наклона. Это дало возможность с наибольшей вероятностью представить характер ориентации колец пентозных остатков в сахарофосфатном костяке молекулы ДНК. В 1952 г. С. Фарберг предложил две умозрительные модели ДНК, которые представляли сложенную или закрученную саму на себя однотяжную молекулу. Не менее спекулятивная модель строения ДНК была предложена в 1953 г. Л. Полингом (лауреат Нобелевской премии, 1954) и Р. Кори. В этой модели три закрученные цепи ДНК образовывали длинную спираль, стержень которой был представлен фосфатными группами, а основания располагались снаружи от него. К 1953 г. М. Уилкинс и Р. Франклин получили более четкие рентгеноструктурные картины ДНК. Их анализ показал полную несостоятельность моделей Фарберга, Полинга и Кори. Используя данные Чаргаффа, сопоставляя разные сочетания молекулярных моделей отдельных мономеров и данные рентгеноструктурного анализа, Дж. Уотсон и Ф. Крик в 1953 г. пришли к выводу, что молекула ДНК должна быть двутяжной спиралью. Правила Чаргаффа резко ограничили число возможных упорядоченных сочетаний оснований в предлагаемой модели ДНК; они подсказали Уотсону и Крику, что в молекуле ДНК должно быть специфическое спаривание оснований – аденина с тимином, а гуанина с цитозином. Иными словами аденину в одной цепи ДНК всегда строго соответствует тимин в другой цепи, а гуанину в одной цепи обязательно соответствует цитозин в другой. Тем самым Уотсон и Крик впервые сформулировали исключительной важности принцип комплементарного строения ДНК, согласно которому одна цепь ДНК дополняет другую, т. е. последовательность оснований одной цепи однозначно определяет последовательность оснований в другой (комплементарной) цепи. Стало очевидно, что уже в самой структуре ДНК заложена потенциальная возможность ее точного воспроизведения. Эта модель строения ДНК в настоящее время является общепризнанной. За расшифровку структуры ДНК Крику, Уотсону и Уилкинсу в 1962 г. была присуждена Нобелевская премия.

 

Проведенные в лаборатории А.Н. Белозерского А.С. Спириным, Г.Н. Зайцевой, Б.Ф. Ванюшиным, С.О. Урысон, А.С. Антоновым и другими многолетние исследования (1957–1974) состава ДНК у самых разнообразных организмов полностью подтвердили закономерности, обнаруженные Чаргаффом, и полное соответствие с молекулярной моделью строения ДНК, предложенной Уотсоном и Криком. Эти исследования показали, что ДНК разных бактерий, грибов, водорослей, актиномицетов, высших растений, беспозвоночных и позвоночных обладают специфичностью состава. Особенно резко различия в составе (содержании АТ‑пар оснований) выражены у микроорганизмов, оказываясь важным таксономическим признаком. У высших растений и животных видовые вариации в составе ДНК выражены значительно слабее. Но это вовсе не означает, что ДНК у них менее специфична. Кроме состава оснований специфичность в большей степени определяется их последовательностью в цепях ДНК.

Наряду с обычными основаниями в составе ДНК и РНК были обнаружены дополнительные азотистые основания. Так, в составе ДНК растений и животных Г. Уайт (1950) нашел 5‑метилцитозин, а Д. Данн и Дж. Смит (1958) обнаружили в некоторых ДНК метилированный аденин. Долгое время метилцитозин считался отличительной чертой генетического материала высших организмов. В 1968 г. А.Н. Белозерский, Б.Ф. Ванюшин и Н.А. Кокурина установили, что он может встречаться также и в ДНК бактерий.

В 1964 г. М. Голд и Дж. Хурвитц открыли новый класс ферментов, осуществляющих природную модификацию ДНК – ее метилирование. После этого открытия стало ясно, что минорные (содержащиеся в малых количествах) основания возникают уже на готовой полинуклеотидной цепи ДНК в результате специфического метилирования остатков цитозина и аденина в особых последовательностях. В частности, по данным Б.Ф. Ванюшина, Я.И. Бурьянова и А.Н. Белозерского (1969) метилирование аденина в ДНК кишечной палочки может происходить в терминирующих кодонах. По данным А.Н. Белозерского и сотрудников (1968–1970), а также М. Мезельсона (США) и В. Арбера (Швейцария) (1965–1969) метилирование придает молекулам ДНК уникальные индивидуальные черты и в сочетании с действием специфических нуклеаз является частью сложного механизма, который осуществляет контроль за синтезом ДНК в клетке. Иными словами, характер метилирования той или иной ДНК предопределяет вопрос о том, может ли она размножаться в данной клетке.

Практически в то же время началось выделение и интенсивное изучение ДНК‑метилаз и рестрицирующих эндонуклеаз; в 1969–1975 гг. установлены нуклеотидные последовательности, узнаваемые в ДНК некоторыми из этих ферментов (X. Бойер, X. Смит, С. Линн, К. Муррей). При гидролизе разных ДНК рестрицирующим ферментом выщепляются довольно крупные фрагменты с одинаковыми «липкими» концами. Это дает возможность не только анализировать структуру генов, как это сделано у небольших вирусов (Д. Натанс, С. Адлер, 1973–1975), но и конструировать различные геномы. С открытием этих специфических ферментов рестрикции генетическая инженерия стала ощутимой реальностью. Встроенные в небольшие плазмидные ДНК гены различного происхождения уже легко вводят в различные клетки. Так, получен новый тип биологически активных плазмид, дающих устойчивость к некоторым антибиотикам (С. Коэн, 1973), введены рибосомальные гены лягушки и дрозофилы в плазмиды кишечной палочки (Дж. Морроу, 1974; X. Бойер, Д. Хогнесс, Р. Девис, 1974–1975). Таким образом, открыты реальные пути для получения принципиально новых организмов путем введения и встраивания в их генофонд разнообразных генов. Это открытие может быть направлено на благо всего человечества.

В 1952 г. Г. Уайт и С. Коэн обнаружили, что в ДНК Т‑четных фагов содержится необычное основание – 5‑оксиметилцитозин. Позднее из работ Е. Волькина и Р. Синсхеймера (1954) и Коэна (1956) стало известно, что остатки оксиметилцитозина могут быть полностью или частично глюкозидированы, в результате чего молекула фаговой ДНК оказывается защищенной от гидролитического действия нуклеаз.

В начале 50‑х годов из работ Д. Данна и Дж. Смита (Англия), С. Заменхофа (США) и А. Вакера (ФРГ) стало известно, что в ДНК могут включаться многие искусственные аналоги оснований, замещая иногда до 50 % тимина. Как правило, эти замещения приводят к ошибкам при репликации, транскрипции ДНК и трансляции и к появлению мутантов. Так, Дж. Мармур (1962) установил, что в ДНК некоторых фагов вместо тимина содержится оксиметилурацил. В 1963 г. И. Такахаши и Дж. Мармур обнаружили, что в ДНК одного из фагов вместо тимина содержится урацил. Таким образом, рухнул еще один принцип, по которому ранее разделяли нуклеиновые кислоты. Со времен работ П. Левина считалось, что отличительным признаком ДНК является тимин, а РНК – урацил. Стало ясно, что этот признак не всегда надежен, и принципиальным различием химической природы двух типов нуклеиновых кислот, как это представляется на сегодняшний день, служит только характер углеводного компонента.

При изучении фагов было вскрыто много необычных признаков организации нуклеиновых кислот. С 1953 г. считалось, что все ДНК представляют собой двутяжные линейные молекулы, а РНК – только однотяжные. Это положение существенно поколебалось в 1961 г., когда Р. Синсхеймер обнаружил, что ДНК фага ϕ X 174 представлена однотяжной кольцевой молекулой. Правда, затем выяснилось, что в такой форме эта ДНК существует только в вегетативной фаговой частице, а репликативная форма ДНК этого фага также двутяжная. Кроме того, весьма неожиданным оказалось, что РНК некоторых вирусов могут быть двутяжными. Этот новый тип макромолекулярной организации РНК был обнаружен в 1962 г. П. Гоматосом, И. Таммом и другими исследователями у некоторых вирусов животных и у вируса раневой опухоли растений. Недавно В.И. Агол и А.А. Богданов (1970) установили, что помимо линейных молекул РНК существуют также замкнутые или циклические молекулы. Циклическая двутяжная РНК выявлена ими, в частности, у вируса энцефаломиэлокардита. Благодаря работам X. Дево, Л. Тиноко, Т.И. Тихоненко, Э. И. Будовского и других (1960–1974) стали известны основные черты организации (укладки) генетического материала у бактериофагов.

 

 

[181]

 

Для понимания организации и функциональной активности генома первостепенное значение имеет определение нуклеотидной последовательности ДНК. Поиски методов такого определения ведутся во многих лабораториях мира. В США М. Бир с сотрудниками с конца 50‑х годов пытается установить последовательность ДНК при помощи электронной микроскопии, но пока безуспешно. В начале 50‑х годов из первых работ Синсхеймера, Чаргаффа и других исследователей по ферментативной деградации ДНК стало известно, что разные нуклеотиды в молекуле ДНК распределены хотя и нехаотично, но неравномерно. По данным английского химика К. Бартона (1961), пиримидины (их более 70 %) сосредоточены в основном в виде соответствующих блоков. А.Л. Мазин и Б.Ф. Ванюшин (1968–1969) установили, что разные ДНК обладают различной степенью сблоченности пиримидинов и что в ДНК животных организмов она заметно возрастает по мере перехода от низших к высшим. Таким образом, эволюция организмов отражена и в структуре их геномов. Именно поэтому для понимания эволюционного процесса в целом сравнительное изучение структуры нуклеиновых кислот приобретает особое значение. Анализ структуры биологически важных полимеров и, в первую очередь, ДНК крайне важен и для решения многих частных вопросов филогенетики и таксономии.

 

[182][183]

 

А.В. Благовещенский и С.Л. Иванов еще в 20‑х годах предприняли первые в нашей стране шаги по выяснению некоторых вопросов эволюции и систематики организмов на основе сравнительного анализа их биохимического состава (см. гл. 2). Сравнительный анализ структуры белков и нуклеиновых кислот в настоящее время становится все более ощутимым подспорьем для систематиков (см. главу 21). Этот метод молекулярной биологии позволяет не только уточнить положение отдельных видов в системе, но и заставляет по‑новому взглянуть на сами принципы классификации организмов, а иногда и пересмотреть всю систему в целом, как это случилось, например, с систематикой микроорганизмов. Несомненно, и в будущем анализ структуры генома будет занимать центральное место в хемосистематике организмов.

Огромное значение для становления молекулярной биологии имела расшифровка механизмов репликации ДНК и транскрипции (см главу 24).

 

 

Биосинтез белка.

 

Важный сдвиг в решении проблемы биосинтеза белка связан с успехами в изучении нуклеиновых кислот. В 1941 г. Т. Касперсон (Швеция) и в 1942 г. Ж. Браше (Бельгия) обратили внимание на то, что в тканях с активным белковым синтезом содержится повышенное количество РНК. Они пришли к выводу, что рибонуклеиновые кислоты играют определяющую роль в синтезе белка. В 1953 г. Е. Гейл и Д. Фокс, как будто, получили прямые доказательства непосредственного участия РНК в биосинтезе белка: по их данным, рибонуклеаза существенно подавляла включение аминокислот в лизатах бактериальных клеток. Аналогичные данные были получены В. Олфри, М. Дели и А. Мирским (1953) на гомогенатах печени. Позднее Э. Гейл отказался от высказанной им правильной идеи о ведущей роли РНК в белковом синтезе, ошибочно считая, что активация белкового синтеза в бесклеточной системе происходила под влиянием какого‑то другого вещества неизвестной природы. В 1954 г. П. Замечник, Д. Литлфилд, Р. Б. Хесин‑Лурье и другие обнаружили, что наиболее активное включение аминокислот происходит в богатых РНК фракциях субклеточных частиц – микросом. П. Замечник и Э. Келлер (1953–1954) обнаружили, что включение аминокислот заметно усиливалось в присутствии надосадочной фракции в условиях регенерации АТФ. П. Сикевиц (1952) и М. Хогланд (1956) выделили из надосадочной жидкости белковую фракцию (pH 5 фракция), которая была ответственной за резкое стимулирование включения аминокислот в микросомах. Наряду с белками в надосадочной жидкости был обнаружен особый класс низкомолекулярных РНК, которые теперь называют транспортными РНК (тРНК). В 1958 г. Хогланд и Замечник, а также П. Берг, Р. Свит и Ф. Аллен и многие другие исследователи обнаружили, что для активации каждой аминокислоты необходим свой особый фермент, АТФ и специфическая тРНК. Стало ясно, что тРНК выполняют исключительно функцию адаптеров, т. е. приспособлений, которые находят на нуклеиновой матрице (иРНК) место соответствующей аминокислоте в формирующейся белковой молекуле. Эти исследования полностью подтвердили адапторную гипотезу Ф. Крика (1957), предусматривавшую существование в клетке полинуклеотидных адапторов, необходимых для правильного расположения аминокислотных остатков синтезирующегося белка на нуклеиновой матрице. Уже много позднее французский ученый Ф. Шапвиль (1962) в лаборатории Ф. Липмана (Нобелевская премия, 1953) в США весьма остроумно и однозначно показал, что местоположение аминокислоты в синтезирующейся белковой молекуле полностью определяется той специфической тРНК, к которой она присоединена. Адапторная гипотеза Крика была развита в работах Хогланда и Замечника.

К 1958 г. стали известны следующие основные этапы белкового синтеза: 1) активация аминокислоты специфическим ферментом из «pH 5 фракции» в присутствии АТФ с образованием аминоациладенилата; 2) присоединение активированной аминокислоты к специфической тРНК с высвобождением аденоаиимонофосфата (АМФ); 3) связывание аминоацил‑тРИК (тРНК, нагруженная аминокислотой) с микросомами и включение аминокислот в белок с высвобождением тРНК. Хогланд (1958) отметил, что на последнем этапе белкового синтеза необходим гуанозинтри‑фосфат (ГТФ).

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: