Призначення елементів і принцип роботи підсилювального каскаду за схемою з ЗЕ

Існує безліч варіантів виконання схеми підсилювального каскаду на транзисторі ЗЕ. Це обумовлено головним чином особливостями завдання режиму спокою каскаду. Особливості підсилювальних каскадів,розглянемо на прикладі схеми рисунока 2, що одержала найбільше застосування при реалізації каскаду на дискретних компонентах. Основними елементами схеми є джерело живлення, керований елемент - транзистор і резистор. Ці елементи утворюють головний ланцюг підсилювального каскаду, у який за рахунок протікання керованого по ланцюгу бази колекторного струму створюється посилена змінна напруга на виході схеми. Інші елементи каскаду виконують допоміжну роль.

Конденсатор виключає шунтування вхідного ланцюга каскаду ланцюгом джерела вхідного сигналу по постійному струму, що дозволяє, по-перше, виключити протікання постійного струму через джерело вхідного сигналу по ланцюгу і, по-друге, забезпечити незалежність від внутрішнього опору цього джерела напруги на базі в режимі спокою. Функція конденсатора зводиться до пропускання в ланцюг навантаження змінної складової напруги і затримці постійної складової.

 



Рис.2

 

Резистори R1 і R2 використовуються для завдання режиму спокою каскаду. Оскільки біполярний транзистор керується струмом, струм спокою керованого елемента (в данному випадку струм ) створюється завданням відповідної величини струму бази спокою . Резистор  призначений для створення ланцюга протікання струму . Разом з  резистор  забезпечує вихідна напруга на базі  відносно ”+” джерела живлення.

Резистор  є елементом негативного зворотного зв'язку, призначеним для стабілізації режиму спокою каскаду при зміні температури. Температурна залежність параметрів режиму спокою обумовлюється залежністю колекторного струму спокою  від температури. Основними причинами такої залежності є зміни від температури початкового струму колектора , напруги і кофіціента . Температурна нестабільність зазначених параметрів приводить до прямої залежності струму  від температури. При відсутності заходів для стабілізації струму , його температурні зміни викликають зміну режиму спокою каскаду, що може привести, як буде показано далі, до режиму роботи каскаду в нелінійній області характеристик транзистора і перекручуванню форми кривої вихідного сигналу. Імовірність появи перетворювань підвищується зі збільшенням амплітуди вихідного сигналу. Прояв негативного зворотного зв'язку і його стабілізуючої дії на струм  неважко показати безпосередньо на схемі рис. 2. Припустимо, що під впливом температури струм  збільшився. Це відбивається на збільшенні струму , підвищенні напруги  і відповідно зниженні напруги . Струм бази  зменшується, викликаючи зменшення струму , чим створюється перешкода збільшенню струму . Іншими словами, що стабілізуюча дія негативного зворотного зв'язку, створюваної резистором , виявляється в тому, що температурні зміни параметрів режиму спокою передаються ланцюгом зворотного зв'язку в протифазі на вхід каскаду, перешкоджаючи тим самим зміні струму , а, отже, і напрузі .

Конденсатор  шунтує резистор  по змінному струму, крім тих самим прояв негативного зворотного зв'язку в каскаді по змінним складовим. Відсутність конденсатора  привела б до зменшення коефіцієнтів підсилення схеми.

Назва схеми "із загальним эмиттером" означає, що вивод емітера транзистора по змінному струму є загальним для вхідної і вихідний ланцюга каскаду. Принцип дії каскаду ЗЕ полягає в наступному. При наявності постійних складових струмів і напруг у схемі подача на вхід каскаду змінної напруги приводить до появи змінної складової струму бази транзистора, а, отже, змінного складового струму у вихідному ланцюзі каскаду (у колекторному струмі транзистора). За рахунок спадання напруги на резисторі створюється змінна складової напруги на колекторі, що через конденсатор передається на вихід каскаду - у ланцюг навантаження.

 


 


Рис.3

 

Розглянемо основні положення, на яких базується розрахунок елементів схеми каскаду, призначених для забезпечення необхідних параметрів режиму спокою (розрахунок по постійному струму). Аналіз каскаду по постійному струму проводять графоаналітичним методом, заснованим на використанні графічних побудов і розрахункових співвідношень. Графічні побудови проводяться за допомогою вихідних (колекторних) характеристик транзистора (рис. 3, а). Зручність методу полягає в наочності перебування зв'язку параметрів режиму спокою каскада  і  амплітудними значеннями його змінних складових (вихідного напруги  і струму ), щоє вихідними при розрахунку каскаду.

На вихідних характеристиках мал. 3, а проводять так називану лінію навантаження каскаду по постійному струмі, що представляє собою геометричні місця крапок, координати яких відповідають можливим значенням крапки (режиму) спокою каскаду. У зв'язку з цим побудова лінії навантаження каскаду по постійному струмі зручно провести по двох крапках, що характеризує режим холостого ходу (крапка) і режим спокою (крапка) вихідного ланцюга каскаду (рис. 3, а).

 

Для точки ”а” ,

Для точки ” ,

,

 

де  вибирають з умови роботи транзистора в режимі відсічки  напруга на колекторі, що відповідає області нелінійних початкових ділянок вихідних характеристик транзистора. Визначивши координати точки  знаходимо значення струму бази , відповідному режимові спокою, і визначаємо координати точки  на вхідній характеристиці (рис. 3, б).

При визначенні змінних складових вихідної напруги каскаду і колекторного струму транзистора використовують лінію навантаження каскаду по змінному струму. При цьому необхідно врахувати, що по змінному струму опір у ланцюзі эмиттера транзистора дорівнює нулеві, тому що резистор  шунтуєтся конденсатором , а до колекторного ланцюга підключається навантаження, оскільки опір конденсатора  по перемінному струмі мало. Якщо до того ж врахувати, що опір джерела живленя  по змінному струму також близько до нуля, то виявиться, що задача визначення цих показників вирішується при розрахунку підсилювального каскаду по змінному струму. Метод розрахунку заснований на заміні транзистора і всього каскаду його схемою заміщення по змінному струму. Схема заміщення каскаду ЗЕ приведена на рис. 4, де транзистор представлений його схемою заміщення у фізичних параметрах. Опір каскаду по змінному струму визначається опорами резисторів  и , включених параллельно, тобто . Опір навантаження каскаду по постійному струму більше, ніж по змінному струму .

 

Рис.4

 

Оскільки при наявності вхідного сигналу напруга і струм транзистора являють собою суми постійна і змінна складових, лінія навантаження по змінному струму проходить через крапку спокою  (рис. 3, а). Нахил лінії навантаження по змінному струму буде більше, ніж по постійному. Лінію навантаження по змінному струму будують по відношенню збільшень напруги до струму: .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: