Химические свойства предельных углеводородов (алканов)

Углеводороды ряда метана при обыкновенной температуре химически весьма инертны, почему они и получили название парафинов (от латинских слов parum affinis — обладающий малым сродством). С большинством химических реагентов эти углеводороды в указанных условиях или вовсе не реагируют, или реагируют чрезвычайно медленно. При сравнительно невысоких температурах протекает лишь небольшое число реакций, при которых происходит замена атомов водорода на различные атомы и группы (реакции металепcuu). Эти реакции ведут к получению производных соответствующих углеводородов.

К реакциям присоединения парафины вообще неспособны в силу насыщенности всех связей атомов углерода.

1. Действие галогенов

Важной реакцией парафиновых углеводородов является взаимодействие их с галоидами На свету эти углеводороды могут последовательно замещать атомы водорода на атомы галоида. При этих реакциях хлор действует энергичнее других галоидов. Труднее всего реагирует иод, и притом реакция не идет до конца, так как, например, при взаимодействии метана с иодом образуется йодистый водород, реагирующий с йодистым метилом с образованием метана и иода (обратимая реакция). Чтобы реакция дошла до конца, необходимо образующийся йодистый водород все время удалять из сферы реакции (па-пример, добавлением окиси ртути или йодноватой кислоты).

2. Действие азотной кислоты

Азотная кислота при обыкновенной температуре почти не действует на парафиновые углеводороды; при нагревании же действует главным образом как окислитель. Однако, как нашел М. И. Коновалов (1889), при нагревании азотная кислота действует отчасти и «нитрующим» образом; особенно хорошо идет реакция нитрования со слабой азотной кислотой при нагревании и повышенном давлении. Реакция нитрования выражается уравнением

т. е. один из атомов водорода заменяется на остаток NO2 (нитрогруппа) и выделяется вода. Особенности строения изомеров сильно отражаются на течении этой реакции, так как легче всего она ведет к замещению на нитрогруппу атома водорода в остатке СИ (имеющемся лишь в некоторых изомерах), менее легко замещается водород в группе СН2 и еще труднее — в остатке СН3.Парафины довольно легко нитруются в газовой фазе при 150—475° С двуокисью азота или парами азотной кислоты; при этом происходит частично и. окисление. Нитрованием метана получается почти исключительно нитрометан. Последующие гомологи дают смесь различных нитропарафинов вследствие попутно идущего расщепления. При нитровании этана получаются нитроэтан СН3—СН2—NO2 и нитрометан СН3—NO2. Из пропана образуется смесь нитропарафинов. Нитрование парафинов в газовой фазе теперь осуществляется в промышленном масштабе.

3. Действие серной кислоты

Серная кислота при обыкновенной температуре не действует на парафины; при высокой температуре действует как окислитель. При слабом нагревании дымящая серная кислота может действовать на парафиновые углеводороды (особенно на углеводороды изострое-ния, содержащие группу СН), образуя сульфокислоту и воду (реакция сульфирования).

4. Одновременное действие сернистого ангидрида и кислорода

При совместном действии сернистого ангидрида и кислорода воздуха под влиянием ультрафиолетовых лучей или добавок перекисей парафиновые углеводороды, даже нормального строения, реагируют с образованием сульфокислот (реакция сульфоокисления).

5. Одновременное действие сернистого ангидрида и хлора

При совместном действии сернистого ангидрида и хлора при освещении ультрафиолетовым излучением или под влиянием некоторых катализаторов происходит замещение атома водорода с образованием так называемых сульфохлори-дов (реакция сульфохлорирования). Вместо смеси SO2 и Cl2 можно пользоваться хлористым сульфурилом.

6. Действие кислорода и окислителей

Кислород и окислители, даже такие сильные, как хромовая кислота и пер-манганат, при обыкновенной температуре почти не действуют на парафиновые углеводороды. При повышенной температуре сильные окислители медленно действуют на предельные углеводороды таким образом, что в каком-нибудь месте молекулы разрывается связь между атомами углерода и молекула распадается на отдельные осколки, окисляющиеся при этом в органические кислоты. Эти кислоты всегда содержат в молекуле меньшее число атомов углерода, чем исходный углеводород, т. е. реакции окисления являются всегда реакциями распада (расщепления) молекулы углеводорода. Газообразный кислород при обыкновенной температуре вовсе или почти не действует на парафины. При высокой температуре углеводороды воспламеняются и горят, причем происходит полное разрушение органической молекулы, ведущее к образованию углекислого газа и воды. Лишь сравнительно недавно было исследовано действие кислорода и воздуха на алканы (преимущественно твердые) при средних температурах, когда окисление протекает довольно энергично, но не приводит к воспламенению. Оказалось, что и в этом случае происходит частичное расщепление молекул углеводородов с образованием кислородсодержащих веществ, главным образом органических кислот. В настоящее время окисление смеси высших твердых предельных углеводородов — окисление парафина - проводится в крупных промышленных масштабах для получения жирных кислот. В последнее время промышленное значение получает так называемое регулируемое (проводимое при сравнительно низких температурах) окисление кислородом или воздухом также и низших предельных углеводородов: метана, этана, пропана и бутана. При этом получаются смеси спиртов, альдегидов, ке-тонов и кислот, причем промежуточно образуются, очевидно, простейшие перекисные соединения. Обычно окисление пропана в промышленных условиях проводят таким образом, чтобы получить возможно больше ацетальдегида.

7. Действие высоких температур

При высоких температурах все парафиновые углеводороды подвергаются более или менее глубокому распаду с разрывом связей С—С или С—Н. При этом образуются продукты, состав которых зависит от условий термического воздействия (температура, давление, продолжительность нагревания) и от природы углеводорода. Так как осуществление этих процессов в принципе несложно, а получающиеся продукты являются ценным топливом и важным сырьем для химической промышленности, этот путь использования парафиновых углеводородов интенсивно изучался и широко распространен.

Метан лучше всех других углеводородов выдерживает нагревание: он начинает заметно разлагаться лишь около 800° С. Важнейшим продуктом превращения метана является ацетилен, который получается с хорошим выходом только в специальных условиях. Одновременно получаются этилен к водород. При понижении температуры содержание ацетилена в продуктах распада понижается, а этилена — увеличивается; понижение давления способствует увеличению выхода обоих углеводородов. Выше 1600° С, а также при длительном нагревании до 800—1600° С метан распадается главным образом на углерод и водород. Этан при температуре 575—1000 С распадается преимущественно на этилен, ацетилен и водород; при дальнейшем нагревании происходит обугливание и вместе с тем образование ароматических углеводородов. Термический распад более сложных углеводородов происходит по-разному в зависимости от температуры. Чем длиннее и разветвленнее углеродный скелет молекулы парафина, тем легче происходит термическое разложение. Так, одинаковая степень термического распада достигается у пропана при 700— 800° С, а у бутана при 650—750° С. Следующие гомологи начинают распадаться при еще более низких температурах. Химические реакции, происходящие при термическом распаде углеводородов, обычно называют крекингом (англ. — растрескивание, разламывание). Механизм процесса крекинга довольно сложен. Первичными продуктами реакции являются свободные радикалы, вступающие затем во взаимодействие между собой и с другими молекулами. Конечными продуктами крекинга, проводимого при 450—550 °С, являются смеси более низкомолекулярных углеводородов (насыщенных, ненасыщенных и циклических). При 550—650°С происходит более глубокий крекинг: получается много углистого остатка (кокса), простейших газообразных углеводородов (насыщенных и ненасыщенных), а также смесь жидких углеводородов, в которой преобладают ароматические углеводороды. При более длительном нагревании образуется больше циклических углеводородов и меньше ненасыщенных. Выше 1000° С распад идет уже главным образом до углерода (кокс) и водорода. Крекинг высших углеводородов в атмосфере водорода, особенно под давлением и в присутствии катализаторов (например, окиси железа), приводит к смеси, в которой преобладают парафиновые углеводороды.          

Вопросы для самоконтроля:

1. Номенклатура алканов

2. Изомерия

3. Способы получения

4. Физические свойства

5. Химические свойства

Рекомендуемая литература:

1. Перекалин В.В., Зонис С.А. Органическая химия. М.,1982

2. Терней А. Современная органическая химия. М.,1979

3. Петров Е.Е., Бальян Х.В., Трощенко А.Т. Органическая химия. М, 1974

4. Ю. А. Жданова «Очерки методологии органической химии», Изд. «Высшая школа»., М., 1960.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: